Biosafe SARS-CoV-2 replicons for high-throughput screening

Brett Lindenbach, PhD Associate Professor Department of Microbial Pathogenesis Department of Comparative Medicine Yale University School of Medicine

We need broadly-acting coronavirus-specific antivirals

<u>SARS-CoV</u> 2002–2004 >8,000 cases 9.6% case fatality

<u>MERS-CoV</u> 2012– >2500 cases 34% case fatality

SARS-CoV-2 2019– >50M cases ~2.4% case fatality

Vaccines generate highly specific neutralizing immune responses. Antivirals target conserved, essential replication enzymes.

HCV: the successful paradigm for antiviral development

2016 Lasker Award: Ralf Bartenschlager, Charlie Rice, and Michael Sofia 2020 Nobel Prize: Harvey Alter, Michael Houghton, and Charlie Rice

Complete Replication of Hepatitis C Virus in Cell Culture <u>Brett D. Lindenbach</u>, Matthew J. Evans, Andrew J. Syder, Benno Wölk, Timothy Tellinghuisen, Christopher C. Liu, Toshiaki Maruyama, Richard O. Hynes, Dennis R. Burton, Jane A. McKeating, Charles M. Rice

Science 2005

What is an RNA replicon?

Targets for SARS-CoV-2 antiviral development

Coronavirus replicons initiate replication inefficiently due to the low specific infectivity (SI) of long RNA transcripts

We have vastly improved on genetic reconstruction of SARS-CoV-2

Infectious Center Assay:

- Serially dilute transfected cells into naive cell population.
- Plate and overlay for plaque formation.

		% cells	RNA S/	
transfect	ted RNA	transduced	(PFU/fmol)	
YFV	(standard)) 74	2.7x10⁴	
32	[standard	0.005	0.39]	~1500v
LR:	optimized	7.3	5.5x10 ²	~1500X
ടെ ഗ്	l contro	I 0	<0.30	

Robust reporter gene expression from our first generation SARS-CoV-2 replicon, SARS2rep

Results are obtained within 24 h

Our replicons do not make infectious virus particles

SARS2rep can be used to measure antiviral efficacy under standard laboratory biosafety conditions

SARS2rep can be used to measure antiviral efficacy

Antiviral drug combinations 1. Different mechanisms of action reduces resistance.

2. Drug-drug synergy increases the effective potency of both drugs.

Second generation SARS2rep: stable cell lines

Dual reporters: luciferase and drug resistance Noncytopathic mutations in nonessential viral genes.

<u>Blavatnik funds will be used to:</u> 1. Complete optimization of 2nd generation replicons and characterize their long-term stability, etc., (\$150K).

2. Partner with an experienced CRO, like Evotec, to conduct pilot screens, demonstrate assay scalability and robustness, and likely reveal novel chemical leads, which will increase our IP (\$150K).

3. Market and license our SARS2rep cell lines to pharma and biotech industry for HTS screening.