# Development of camostat-related compounds for COVID-19 and other coronavirus infections

Joseph M. Vinetz, M.D. Professor of Medicine Section of Infectious Diseases Department of Internal Medicine



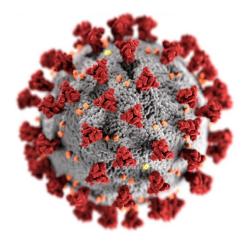


## The Problem: No outpatient treatment for COVID-19

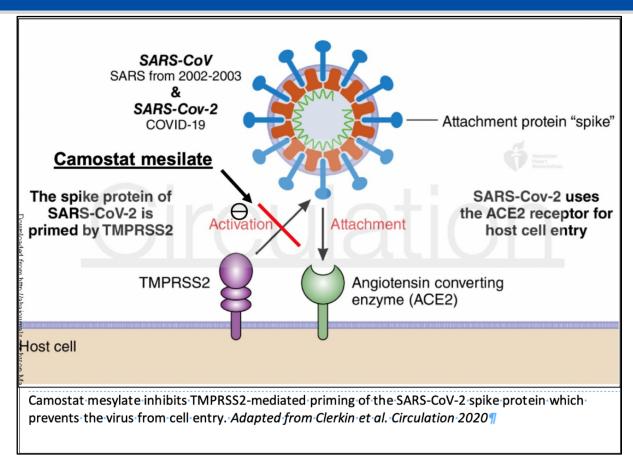
- Supportive—isolation, quarantine, refer to hospital
- Vaccines on horizon—treatment still necessary
- Antivirals—none
  - Antibodies available; expensive and challenging to give
- Hoped-for outcomes of a new orally available drug—a **magic** pill
  - A pill to be taken outside of hospital
  - To treat sick people (feel better, prevent disease progression)
  - To prevent infection after exposure (prophylaxis)
  - To prevent transmission (public health approach)
- We need a rationale way to open up our country, our economy, our world
- <u>Cold viruses don't have treatments either</u>

#### **Executive Summary**

- SARS-CoV-2 (the virus) and COVID-19 (the disease) are causing untold global harm to human health
- There is no anti-viral treatment for early COVID-19 infection to forestall complications
  - A drug to prevent SARS-CoV-2 infection and transmission would have global importance including virus eradication
  - Such a drug might be active against other and future coronaviruses given known mechanism of action
  - Global interest in camostat, strong fundamental data
- Yale has established a best-in-world outpatient clinical trial platform to test treatments of early COVID-19 infection
- Camostat, a repurposed oral serine protease inhibitor is in Phase II clinical trial at Yale for early, outpatient, treatment of COVID-19, requires molecular optimization
- Global market for a safe and effective anti—coronavirus drug is in the many \$billions


# Experienced Scientific, Development and Business Team

| Joseph M. Vinetz, M.D.<br>Professor of Medicine | <ul> <li>Harrington Discovery Institute Team</li> <li>Mukesh Jain, MD FAHA, Chief<br/>Scientific Officer</li> </ul>        |                       |
|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Section of Infectious<br>Diseases               | <ul> <li>Diana Wetmore, PhD, VP of</li> <li>Therapeutics Development</li> </ul>                                            |                       |
| Department of Internal<br>Medicine              | <ul> <li>*Kaushik Dave, PhD, MBA,</li> <li>R.Ph, TD Strategic Advisor</li> <li>Perry Molinoff, MD, TD Strategic</li> </ul> | David Lewin, PhD      |
| *Highly experienced                             | Advisor                                                                                                                    |                       |
| medicinal chemists with                         | <ul> <li>Donald Stanski, MD, TD Strategic</li> </ul>                                                                       | Director Bus. Dev.    |
| long-term industry                              | Advisor                                                                                                                    | Yale, OCR             |
| experience                                      | + *William Greenlee, PhD, TD                                                                                               |                       |
|                                                 | <ul> <li>Strategic Advisor</li> <li>Vadim Bichko, PhD, TD Strategic</li> </ul>                                             | Advisor/IP Management |
| IP is Yale's                                    | Advisor                                                                                                                    |                       |
|                                                 | <ul> <li>Jeffrey Klein, PhD MBA, Project</li> </ul>                                                                        |                       |
|                                                 | Manager, Therapeutics                                                                                                      | david.lewin@yale.edu  |


Development

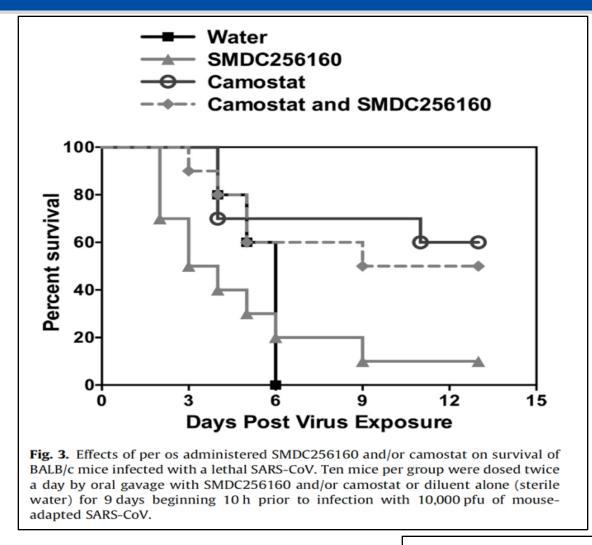
#### Mechanism of anti-viral action of **camostat** for SARS-CoV-2

The respiratory epithelial cell surface serine protease, TMPRSS2, is both necessary and sufficient for viral entry.



CDC, 2020




#### The idea is that camostat prevents virus from infecting respiratory lining cells

Repurposed drug, i.e. already available (Japan, used for pancreatitis)

Hoffmann et al., 2020, Cell *181*, 271–280 April 16, 2020 © 2020 Elsevier Inc. https://doi.org/10.1016/j.cell.2020.02.052

Yale school of medicine

# Camostat protects mice in vivo against SARS-CoV

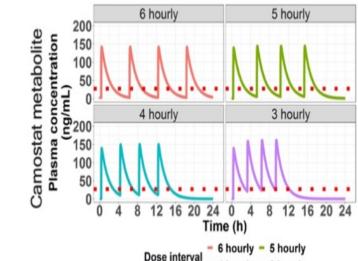


Y. Zhou et al./Antiviral Research 116 (2015) 76–84

# Yale's best-in-world outpatient clinical trial platform for COVID-19

#### Design: Randomized, double-blind, placebo-controlled

<u>Hypothesis</u>: Camostat mesylate will have an *in vivo* anti-viral effect on SARS-CoV-2 that will diminish clinical signs and symptoms of COVID-19 and reduce viral load in the respiratory tract

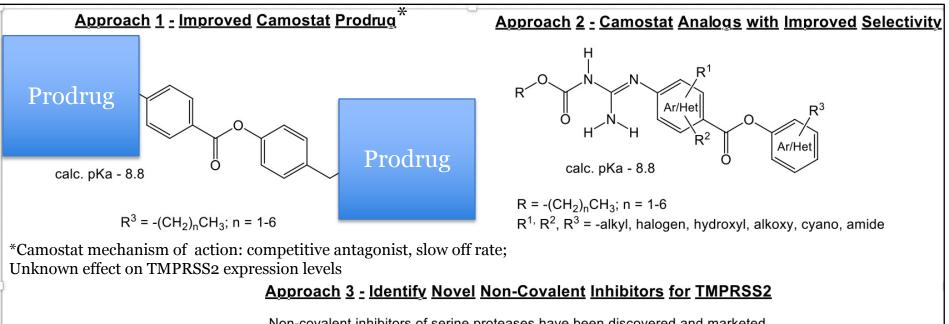

Study population:

- Ambulatory (outpatients)
- Early infection
- <u>Participants</u>: COVID-19+ within 3 days of a positive report
- Pilot phase: N=114, viral load outcome; Clinical outcome phase, N=600
- Primary outcome: every other day NP swab or saliva tests
- Daily symptom score and clinical assessments; O2 levels (pulse oximeter) Outcomes:
- Primary: Measurement of respiratory viral load (does drug reduce/eliminate virus?)
- Secondary: Risk for hospitalization, complications

# Limitations of Camostat

- Designed for <u>local effect</u> in the gut:
  - Oral bioavailability, PK/PD not optimal
- Dosing frequency QID, compliance challenges
- PK/PD need to be improved via medchem

**<u>GOAL</u>** – A potent and selective TMPRSS2 inhibitor with robust anti-COVID-19 efficacy and PK/ for oncedaily oral dosing in humans Relationship between plasma concentration and viral inhibitory concentration




EC50 of camostat 0.087 µM Hoffmann et al.(2020) AAC.

| 200mg QID<br>Dose interval | Duration over 0.087 μM<br>(hour/day) | Average<br>concentration |
|----------------------------|--------------------------------------|--------------------------|
| 6 hourly                   | 10.4                                 | 0.12 μM                  |
| 5 hourly                   | 10.5                                 | 0.12 µM                  |
| 4 hourly                   | 10.6                                 | 0.12 µM                  |
| 3 hourly                   | 11.0                                 | 0.12 µM                  |

4 hourly = 3 hourly

### Complementary medchem approaches to optimize TMPRSS2 Camostat-related inhibitors



Non-covalent inhibitors of serine proteases have been discovered and marketed.

## Proposed Use of Blavatnik Funds

- Stage 1: 6 months
  - Preliminary medicinal chemistry (\$100K) at Jubilant, Pirimal, or the like, inclusive of established TMPRSS2 activity assay\*
- Stage 2: 9 months depending upon medchem product(s)
  - Preliminary IP & Oral PK/PD for top 5 compounds \$60K
  - PanLabs tox & microsomal stability for best 2-3 compounds \$20K
  - Test against other CoVs (\$20K)
- Stage 3: 10-18 months
  - Animal efficacy model for SARS-CoV-2 and/or other CoV (\$100K)
    - Charles River: hamster, ACE2-transgenic mice
- Total: \$300K

\*<u>An Enzymatic TMPRSS2 Assay for Assessment of Clinical</u> <u>Candidates</u> <u>and Discovery of Inhibitors as Potential Treatment of COVID-19.</u> Shrimp JH, Kales SC, Sanderson PE, Simeonov A, Shen M, Hall MD. ACS Pharmacol Transl Sci. 2020 Sep 7;3(5):997-1007. doi: 10.1021/acsptsci.0c00106