Target Site Blocker (**TSB**) of the IL-17A-miR466l-3p Interaction Prevents Progressive and Relapsing Remitting **EAE**

The Team

Jeffrey R. Bender, MD

Robert I. Levy Professor Cardiology
Professor of Medicine and Immunobiology
Director, Yale Cardiovascular Research Center

Contact: 203-737-2223 (w)

203-980-9585 (c)

jeffrey.bender@yale.edu

Vinod Ramgolam, Ph.D.

Associate Research Scientist, Internal Medicine

Timur Yarovinsky, Ph.D.

Associate Research Scientist, Internal Medicine

Nancy Ruddle, Ph.D.

Professor Emeritus and Senior Research Scientist, Epidemiology (Microbial Diseases)

Target Site Blocker (TSB) of the IL-17A-miR466l-3p Interaction Prevents Progressive and Relapsing Remitting EAE

- What we have: a microRNA
 "target site blocking"
 oligonucleotide that interferes
 with pro-inflammatory cytokine
 IL-17 production
- Where it stands: (1) extensive in vitro data supporting its ability to block IL-17 production in immune cells; (2) dramatic in vivo data displaying prevention of EAE (mouse model of multiple sclerosis)
- Development targets: (1) in vivo pharmacokinetic (and toxicology) data with multiple delivery sites;
 (2) mechanistic readout analysis in EAE prophylaxis; (3) application to other disease models
- Reason for these targets:
 requirements for in vivo dosing,
 safety and widespread
 applicability (market)

The non-conventional role of miR466l-3p in mRNA stablization

Conventional function of miRNA

Enhancing role of miR466l-3p

Target Site Blocker (**TSB**) of the IL-17A-miR466l-3p Interaction Prevents Progressive and Relapsing Remitting **EAE**

- Concept: Enhancing miRNAs augment gene expression
- Concept: Beyond the seed sequence, there is specificity to a miR-mRNA 3'UTR interaction
- Concept: A target site blocking oligonucleotide (TSB) can achieve that specificity and reduce individual gene expression, without off-target effects/toxicity
- Concept: The TSB market has not been explored
- Small (18 nucleotide, ~7 kDa) oligos gain greater access to protected sites (e.g., the CNS, across the BBB) than antibodies (~150 kDa)

- Context: miR466l-3p promotes IL-17A gene expression
- Context: IL-17A plays a critical pathogenic role in inflammatory diseases such as multiple sclerosis (MS), psoriasis, autoimmune uveitis, asthma, IBD and even atherosclerosis
- Context: A specific inflammationdampening oligonucleotide can treat and/or diminish the burden of these inflammatory diseases

mir466l-IL17A Target site blockers (TSB)

Advantage TSB vs anti-miR

TSBs inhibit 1 miRNA binding to 1 mRNA target, whereas anti-miRs inhibit binding of 1 miRNA to all targets

miR466l-3p/IL-17A TSB in a progressive EAE mouse model (2D2 Transgenic)

miR466l-3p/IL-17A TSB in relapsing remitting EAE mouse model

GD Genesis Drug Discovery & Development Proposal

- •Phase I: \$83,000
 - •EAE model development
 - •TSB quantitation (LC-MS/MS or alternative)
 - •PK studies (IP, IV, SC)
- •Phase II: \$127,000
 - Efficacy studies (multiple delivery routes [IP, IV, SC, ICV] and models)
 - *clinical scores
 - *brain, spinal cord, spleen IL-17A

Phase III: \$84,000

- •Efficacy studies at defined, appropriate ED
 - *clinical scores
 - *spinal cord cytokines
 - *FACS of inflammatory cell infiltrates
 - *histopathology
- Target tissue PK after the last dose
- Discovery Toxicology Study: \$13,000
- •10 day peripheral blood counts, clinical chemistries, body weights (single highest dose)

Additional IL-17A-dependent Mouse Models (and applications)

- Collagen-induced arthritis (rheumatoid arthritis)
- Experimental autoimmune uveitis (autoimmune uveitis)
- Imiquimod-induced psoriasis (psoriasis) [topical delivery]

- IBD
- Atherosclerosis
- Asthma