RegenaVision

RegenaVision

Scientific Team

Mark Fields, MPH, PhD

Assistant Professor Yale Ophthalmology and **Visual Science**

Cell biologist with experience in academic and industrial ophthalmic therapeutic development and retinal disorders.

Lucian Del Priore, MD, PhD **Vitreo-retinal Specialist** Yale Ophthalmology and **Visual Science**

Vitreo-retinal specialist with first-hand insights into patient populations and current treatments of ocular disorders.

A medicinal chemist, cell biologists and a retinal specialist are interested in dry AMD, a leading cause of blindness with no approved treatment

Denton Hoyer, PhD **Medicinal Chemist** Independent consultant

Research Scientist with over 30 years ophthalmic R&D drug discovery experience in the area of retinal degenerative disease.

Expertise in critical assessment of lead matter from HTS campaigns and new target discovery, formulation development for *in vivo* and pharmacokinetic studies.

No approved therapies to prevent the onset or progression of dry AMD

Disease Overview

- AMD is a progressive degenerative disease of the retina
- Major cause of legal blindness
- Patient population 11 million (US);186 million (WW)
- Advanced AMD characterized by retinal pigment epithelium (RPE) and photoreceptor cell death

Contributors to disease pathology

Our goal is to develop local therapy to prevent progression of dry AMD

Target Product Profile

New small molecule eye drops that:

- Prevents progression of:
 - Early to intermediate dry AMD
 - Intermediate to advanced AMD
 - Worsening of advanced AMD •
- Will reach the back of the eye
- Has a known safety profile and drugdrug interactions
- Protect RPE from oxidative damage/ and mitochondrial dysfunction

Primary Screening Rationale

- RPE cells at the Yale Center for Molecular Discovery (Cai et al., 2019).
- ~85,000 compounds screened
- Synthetic, and ChemBridge DiverSet
- 132 "screen actives" over threshold
- properties.
- 3 compounds from the hit series were selected for follow up studies.

High-throughput screening identifies compounds that protect RPE cells from (physiological stressors present in AMD

Hui Cai^a, Jie Gong^a, Laura Abriola^b, Denton Hoyer^b, NYSCF Global Stem Cell Array Team^c, Scott Noggle^c, Daniel Paull^c, Lucian V. Del Priore^a, Mark A. Fields^{a,*}

Department of Ophthalmology and Visual Science, Yale School of Medicine, 300 George St., Sube 8100, New Haven, CT, 06511, USA Yale Center for Molecular Discovery, 600 West Campus Drive, West Haven, CT, 06516, USA * The New York Sum Cell Foundation (NYSCF) Research Institute, 619 West 54th St., New York, NY, 10019, USA

We developed a phenotypic high-throughput screen that mimics the effects of oxidative damage in

Libraries: Pharmakon 1600, Enzo FDA Approved drugs, SelleckChem Kinase Inhibitor, Enzo Kinase inhibitor library 2016, YCMD Tested in Humans, Analyticon MACROx and NATx, ChemDiv

Lead were reviewed by 3 expert medicinal chemist and computationally assessed for drug-like

3 Assets in Preclinical Development

In vitro models of AMD

- Oxidative damage
- UV-B light damage
- Aged/Damaged Bruch's membrane
- Oxidative stress-induced mitochondrial dysfunction

In vivo models of AMD

- Blue light damage model of geographic atrophy
 - Photo-oxidative damage induces apoptosis and retinal atrophy
 - Disease model MOA also associated with retinitis pigmentosa and retinal detachment

Ciclopirox shows efficacy in both in vitro and in vivo models of AMD

Ciclopirox show efficacy in 4 different models that mimic AMD

Diseased Bruch's Membrane

UV-B Light Damage

ATP Production

Caged ciclopirox successfully delivered to the retina and choroid in rabbit

Cage ciclopirox improves retinal thickness after blue light damage (BLD) in rat

OCT Retinal Thickness 0.12 a Thickness (um) Day 9 Retina ₫ 0.08 BLD. Vehicle control iclopiro' BLD-21.3 mg/mL cic. Naive

Optical Coherence Tomography – arrows measure mid-layer thickness hicle

Hematoxylin & Eosin

Caged ciclopirox prevents retinal stress after BLD in rat

No BLD Naïve

BLD Vehicle alone

BLD Ciclopirox

24

NCEs show efficacy in both in vitro and in vivo models of AMD

M414 and M434 show efficacy in 4 different models that mimic AMD

M414 and M434 improve retinal thickness after blue light damage (BLD) in rat

OCT - optical coherence tomography *Experiments conducted by third party: Comparative Biosciences, Inc., San Francisco, CA

M414 and M434 restore visual function after BLD in rat

Blavatnik award will help progress Regenavision to obtain the following data

Test efficacy of optimized analogs of Centre NCEs in blue light damage model of the geographic atrophy.

Comparative Biosciences \$80,000 Cellular thermal shift assay (CETSA) to determine target engagement.

Formulation development for **topical** for early/intermediate AMD and **intravitreal (IVT)** delivery for late AMD.

Pelago Biosciences \$120,000 PharmOptima, LLC \$50,000

Competitive Landscape

NCEs and ciclopirox would offer significant advantages over current competitors in the form of a more convenient ROA and broader patient population

	APL-2	Zimura/ARC1905	Elamipretide	M414 and M434
Manufacturer	Apellis Pharmaceuticals	Iveric Bio	Stealth Therapeutics	RegenaVision
Phase	Ph III	Ph III	Ph IIb	Preclinical
Study population	GA secondary to Dry AMD	GA secondary to Dry AMD	AMD w/ non central GA	Early to intermediate Dry AMD
ROA	Intravitreal injection	Intravitreal injection	Subcutaneous Injection	Topical
ΜΟΑ	Complement Pathway C3 therapy	Complement Pathway C5a therapy	Mitochondrial dysfunction/ROS	Mitochondrial dysfunction/ROS
Primary endpoints	 Change in total area of GA Lesion(s) in the study eye (in mm2) as Measured by Fundus Autofluorescence (FAF) (Baseline, 12 months) 	•Mean rate of change in GA over 12 months (measured at three time points: Baseline, Month 6, and Month 12)	 Change in low- luminance best- corrected visual acuity 	Considerations: • Change in low-luminance best- corrected visual acuity • Rate of anatomic progression of geographic atrophy
Data readout from phase 2 trials	 GA growth rate reduction: 29% and 20% compared to sham depending on dosing regiment 	 GA mean growth reduction: ~27% compared to sham 	•N/A	•N/A

- Established unique screening process for dry AMD
- Discovered and optimized 3 compounds (1 repo, 2 NCEs)
- Validated in CRO setting using dry AMD models
- Statistically significant improvement in *in vitro* and <u>in vivo</u> models of dry AMD
- Looking to raise \$250,000 for formulation development and pre-IND studies.

Executive Summary