Antibody-mediated gene editing and DNA/RNA delivery

Peter Glazer

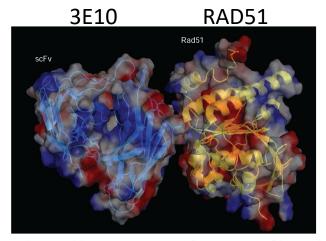
Departments of Therapeutic Radiology and Genetics

Yale University

Application for a Blavatnik Development Grant

Team

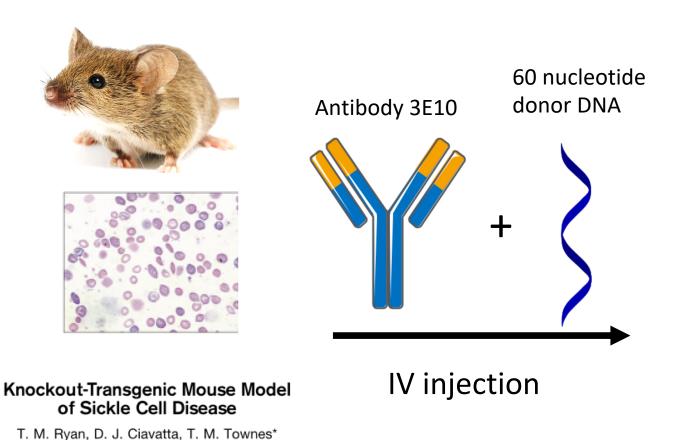
- Peter Glazer:
 - Professor and Chair of Therapeutic Radiology, Professor of Genetics, Yale
 - Founder, Cybrexa Therapeutics, New Haven, CT
 - Co-inventor of foundational IP
 - Inventor on more than 20 licensed patents
- Elias Quijano
 - MD/PhD student, Yale
 - Co-inventor of foundational IP

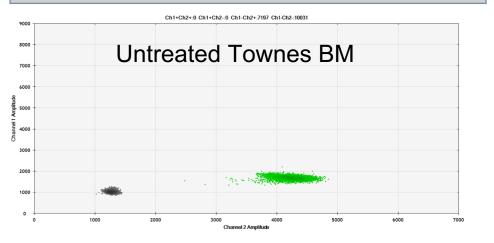


3E10: a gene editing Monoclonal antibody (geMab)

3E10 is a cell-penetrating antibody that transports DNAs and RNAs into cells and tissues in vivo

Untreated cells 3E10 antibody GFP plasmid alone GFP plasmid + 3E10


3E10 modulates DNA repair pathway to promote gene editing


A cell-penetrating antibody inhibits human RAD51 via direct binding


Audrey Turchick¹, Denise C. Hegan², Ryan B. Jensen^{2,3} and Peter M. Glazer^{1,2,*}

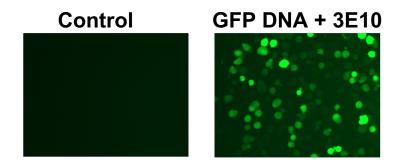
Antibody mediated gene editing of the sickle cell disease mutation in mice: IV injection of 3E10 antibody with donor DNA

Droplet digital PCR assay for gene editing

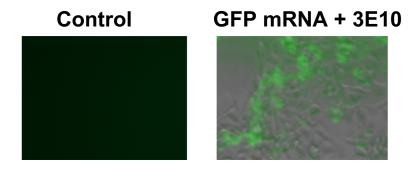
Blue dots represent corrected genes

Business opportunity

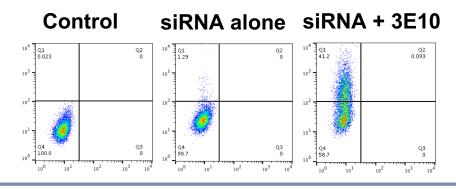
- Antibody gene editing: a clinically translatable gene editing platform with broad application
- Scalable to multiple diseases:
 - sickle cell, cystic fibrosis, lysosome storage diseases
- The disease targets are already established
- Exclusive IP: "Compositions and Methods For Enhancing Donor Oligonucleotide-Based Gene Editing" – pending, Yale University application


Pricing Precedents

Bluebird Bio set a price of \$1.8 million for gene therapy Zynteglo Spark Therapeutics' Luxturna will cost \$850,000 (\$425,000 / eye)


Novartis / AveXis set a price of \$2.1M for Zolgensma

Broader applications: DNA and RNA delivery in vivo


- Delivery of large DNAs
 - Gene replacement and gene therapy
 - Generate CAR-T cells in vivo and simplify CAR-T production

- Delivery of mRNAs
 - Alternative technology to Moderna

- Delivery of siRNAs
 - Alternative technology to Alnylam

Fluorescein labeled siRNA

Differentiating benefits

Technology	Virus?	Nuclease?	Immunogenic?	IV treatment?	Established CMC methods
CRISPR	YES	YES	YES - people have pre-existing antibodies to Cas9	mostly ex vivo	under development
Viral gene therapy	YES	NO	YES - history of adverse events	YES	yes but high cost of goods
3E10 antibody	NO	NO	Not after antibody is humanized	YES	yes- clinical antibody production well established

Unmet need: 3E10 as a gene therapy delivery platform

IN THE LAB

STAT+

Gene therapy pioneer says the field is behind — and that delivery technology is 'embarrassing'

By REBECCA ROBBINS @rebeccadrobbins / NOVEMBER 21, 2019

Use of Blavatnik funds

- Determine scope of DNA and RNA delivery in vivo
- Determine size maximum of DNA
 - T cell receptor expression construct?
- Evaluate gene editing capabilities
- Generate antibody variants to optimize activity
- Scale up antibody production for pre-clinical studies