Overcoming PARP Inhibitor Resistance in Cancers

Therapy designed to reinvigorate the effectiveness of PARP inhibitors

Investigators: Z Ping Lin, PhD and Elena Ratner, MD

Team

<u>Z Ping Lin, PhD</u>

- Research Scientist
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine
- Experimental Cancer
 Therapeutics and Drug
 Discovery

Elena Ratner, MD

- Associate Professor and Co-Chief, Division of Gynecologic Oncology
- Department of
 Obstetrics, Gynecology, and Reproductive
 Sciences, Yale
 University School of
 Medicine
- Cytoreductive Surgery and Treatment of Ovarian and Gynecologic Cancers

70% of ovarian cancer patients will have recurrence & develop therapeutics-resistant disease

Cancers with BRCA mutation (defective HR repair) are sensitive to PARP inhibitors

Base-excision Homologous Homologous Base-excision repair recombination recombination repair (HR) (HR) PARP1 PARP1 BRCA Reversion of BRCA mutation PARP PARP Inhibito to restore HR repair Inhibitor No repair Repair Cell death

<u>Recurrent cancers without BRCA mutation</u> are resistant to PARP inhibitors

Adapted from Iglehart JD, Silver DP. N Engl J Med 2009;361:189-191.

As PARP Inhibitors become widely used, there will be an increase in patients who develop PARP inhibitor resistant cancers§

§ Noordermeer SM, van Attikum H. Trends Cell Biol. 2019;29:820-834.

Our team has developed DB4, a small molecule drug that inhibits HR repair. DB4 + Olaparib[¶] combo provides effective therapy for cancers without BRCA mutation

- PARP inhibitors are used for the treatment of ovarian, breast, prostate, and pancreatic cancers.
- The 2017 US PARP inhibitor market for ovarian cancer: <u>\$305.5 million</u>. The 2023 market for ovarian, breast, prostate, and pancreatic cancers: <u>\$2.2 billion</u>.[#]

¶ Trade name: Lynparza®. It is an FDA-approved PARP inhibitor for the treatment of BRCA-mutated advanced ovarian cancer

https://decisionresourcesgroup.com/downloads/parp-inhibitor-cheat-sheet-for-oncology-strategists/

DB4 demonstrates effectiveness to inhibit HR repair and increase DNA damage in cancers without BRCA mutation

DB4 inhibits HR repair (HRR) in ovarian cancer cells

DB4 + Olaparib combo increases DNA damage (γH2AX) in ovarian cancer cells

DB4 + Olaparib combo inhibits ovarian cancer progression and increases the survival time of CDX tumor-bearing mice

DB4 + Olaparib combo reduces ascitic/abdominal distension

DB4 + Olaparib combo prolongs the survival time of mice

Competitive Landscape for PARPi vs. PARPi + DB4 for Treatment of Various Cancer Types

Cancer Type	PARPi	PARPi+DB4
BRCA mutation	Yes	Yes
No BRCA mutation	No	Yes
PARP inhibitor-resistant	Νο	Yes
Recurrent	Yes to No [¶]	Yes

The estimated market opportunity for DB4: <u>\$0.5-1 billion</u>

¶ Likelihood of YES reduces with each cancer recurrence following treatment

Next Steps: Milestones & Cost for Development of DB4

