Asyst Therapeutics

Transformative therapies for polycystic kidney disease

A small molecule drug candidate targeting the Ire1α-XBP1 pathway for treatment of polycystic kidney disease

Yale school of medicine

Building a company focused on developing paradigm shifting strategies for ADPKD

- Founded on unique insights into ADPKD biology
 - Ire1-Xbp1 ER stress pathway is critical for the viability of cystic cells
 - Finding that is potentially synergistic with other strategies
- Lead compound partially de-risked
 - No adverse events in limited human trial
 - Efficacy demonstrated in two independent orthologous ADPKD mouse models
 - Method of use patent filed

Stefan Somlo, MD C.N.H Long Professor of Medicine and Genetics Chief, Section of Nephrology

Sorin Fedeles, PhD, MBA **Research Faculty**

Matteus Krappitz, MD, Dr. med. Nephrologist

Rachel Gallagher, PhD **Research Faculty**

Our team has extensive expertise in genetics, polycystic diseases, clinical nephrology, and performing translational research with transformative potential

Autosomal Dominant Polycystic Kidney Disease (ADPKD)

- ADPKD affects >600,000 in US population; 12.5 M worldwide
- ~4% of prevalent End-Stage Renal Disease (ESRD)
- ADPKD has **orphan condition designation** (2012) with estimated prevalence in US 1:2,000

One **approved therapy**: Tolvaptan (Jinarc) – approved April, 2018

- Targets low level proliferation and secretion in cysts originating from collecting duct
- Limitations:
 - Uncertain long-term efficacy
 - Adverse effects: liver toxicity (Hy's law), polydipsia/polyuria (~6L/day)
 - Not tolerated by all patients
 - \circ $\,$ Only indicated for patients at high risk for rapid progression

Ire1-XBP1 pathway

enes

Ire1α inhibitor prevents cyst growth in preclinical models (1)

- Prevented cysts in preclinical studies with orthologous gene models of ADPKD
 - Early onset rapid model (data not shown)
 - Adult onset with PC1 missense mutation in trans with loss of function

Wild type

Pkd1 adult cystic model

Pkd1 adult model + Inhibitor

Inhibitor: 0.5 mg/kg IP once every 2 weeks from 6-18 weeks age

Ire1α inhibitor prevents cyst growth in preclinical models (2)

- No apparent systemic toxicity (body weight)
- Reduced cyst growth (kidney/body weight ratio)
- Normalized kidney function (blood urea nitrogen [BUN])
- Enhanced apoptosis specifically in cyst cells with PC1 mutation

Ire1α inhibitor improves disease progression in a second adult ADPKD model

- Adult onset model with complete loss of function
- Treatment started immediately after gene inactivation (from 6 to 18 weeks)

Inhibitor

Inhibitor: 0.5 mg/kg IP, 1x/week

Ire1α inhibitor has a better preclinical profile than Tolvaptan

	Ire1 α inhibitor	Tolvaptan
Cysts start by somatic second hit mutations <u>Cyst cells are recessive</u> for PKD genes	Specifically targets cyst cells for apoptosis with no effect on heterozygous non-cyst cells	Reduced proliferation and/or secretion in cysts Aquaresis in normal collecting duct
Adult preclinical animal models	Adult ADPKD model (Pkd1RW/flox) 12 weeks of treatment 18 week-old at sacrifice >75% decrease in KW/BW ratio	Adult ADPKD model (Pkd1RC/RC) 20 week treatment 24 week-old at sacrifice ~24% decrease in KW/BW ratio [Hopp et al, 2015, JASN]

Current Development Plan

Activity	Cost	Time (months)
Develop lead molecule through CRO studies for in vivo PK/tox	\$180,000	12
Medicinal chemistry combined with <i>in silico</i> drug design for generating new composition of matter (CRO)		6
Test newly generated chemistry in early ADPKD models in-house	\$40,000	6

Contact information

Stefan Somlo stefan.somlo@yale.edu

Sorin Fedeles sorin.fedeles@yale.edu

