Identification of Novel Small Molecules to Treat Neurological Disorders by Modulating Phase Transitions

PI: Christian Schlieker PhD

The Team

Christian Schlieker, PhD Professor of Molecular Biophysics and Biochemistry Professor of Cell Biology Team Leader

Dylan Poch, BSc (Chem) PhD candidate Schlieker Lab

Pioneered HTS pipeline

Longstanding Expertise in HTS

Yulia Surovtseva, PhD

Director, YCMD

Anthony Koleske, PhD Professor of Molecular Biophysics and Biochemistry Professor of Neuroscience

Need for Effective Therapeutics to Treat Dystonia

Dystonia is the third most frequent movement disorder affecting ~250,000 US citizens

Patients present with severe spasms, involuntary muscle contractions and twisted postures

There is **no cure** for dystonia and treatments (BOTOX, Deep Brain Stimulation) are inadequate

Opportunity for Innovation in Treatment Market

The current dystonia, ALS, and FTD treatment landscape is inadequate

Disease	Estimated Prevalence	Estimated Market (2030)	Compound Annual Growth Rate (CAGR)
Dystonia	1.3 million	1.2 billion	5.1%
ALS	500,000	950 million	6.5%
FTD	1.2 million	450 million	5.1%

Combined estimated market opportunity > 2.6 billion (2030)

Reduction of Aberrant Phase Transitions Could Prevent Dystonia

Healthy Cell

MLF2-GFP

Aberrant proteotoxic condensate

MLF2-GFP

Aberrant phase transitions create proteotoxic condensates that are drivers of dystonia pathology.

We identified MLF2 and DNAJB6 as Dystonia biomarkers for precision monitoring of phase transitions

Reduction of aberrant phase transitions could restore protein homeostasis to prevent or modulate dystonia severity

HTS assay, Validation in Cells and Animal Model

Potent reduction of proteotoxicity

DIx-CKO Pappas et al., eLife https://doi.org/10.7554/eLife.08352

Aberrant Phase Transitions Occur in ALS and FTD

Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD) are terminal neurodegenerative diseases with no cure

MLF2 acts as a Novel Biomarker for Stress Granules of ALS/FTD

Project Timeline

Progress since 2023

Screen with MLF2 Biomarker

15,000+ compounds screened

Result: Several hits identified and validated

Completed

Milestone 1

Expand to New Chemical Matter

- 1. Screen 50,000+ compounds
- 2. Source & validate screenactives, clustering/SARs

3. Establish dose/response& toxicity in cell-basedDYT1 and ALS/FTD models

\$80,000 total

Milestone 2

Evaluate Efficacy of Lead Compounds

- Perform functional assays for cellular protein homeostasis and phase separation \$50k
- 2. Test compounds in animal model \$120k

3. Initiate target identification \$150k

~\$2M core funding (pathomechanism)

DYSTONIA MEDICAL RESEARCH FOUNDATION Budget Request: \$300,000

Key Publications from Our Lab

Key publications from my lab of relevance to this proposal:

- Definition of molecular defect underlying primary (DYT1) dystonia: <u>Zhao et al. PNAS 2013</u> <u>Brown et al. PNAS 2014</u>* *editorially highlighted by Nature Structural and Molecular Biology
- Identification of biomarkers and cellular defects
 <u>Laudermilch et al. MBoC 2016</u>
 <u>Rampello et al. J Cell Biol 2020</u>
- Discovery of aberrant phase separation/proteotoxicity as key driver for cellular pathology
 <u>Prophet et al. Nature Cell Biol 2022</u>*
 - *editorially highlighted by <u>NCB</u> and <u>Movement Disorders</u>

Proteotoxic Condensates are Reduced Pharmacologically

Proof of Concept

Small molecules DP-665 & DP-2303 decreases multiple condensate markers in vitro

Current Treatments Focus on Relieving Symptoms

Class	Treatment	Route	Limitations	
Botulinum toxin	BOTOX	Injection	 Requires treatments every 3-4 months Administered at geographically limited, specialized centers Not a cure 	
Surgery	Deep brain stimulation (DBS)	_	 Invasive procedures Completed at geographically limited, specialized centers Only helps a subset of patients <u>Not a cure</u> 	
	Selective Denervation Surgery	_		
(Medications	Anticholinergic Drugs (i.e trihexyphenidyl and benztropine)	Oral		
	Muscle Relaxants (i.e baclofen)	Oral	 Only helps a subset of patients Includes drug-related side effects (i.e. sedation) Carries a risk of dependence (i.e. benzodiazepines) Not a cure 	
	Dopaminergic Agents (i.e levodopa and tetrabenazine)	Oral		
	Benzodiazepines (i.e clonazepam and diazepam)	Oral		

There is an unmet need to develop oral medication that has potential to prevent disease onset or modulate severity