Harnessing p53beta as a medical treatment for skin cancer

YALE VENTURES

CCRX

Developing the first topical medical treatment for squamous cell carcinoma of the skin

Team/Collaborators

LEAD INVENTOR

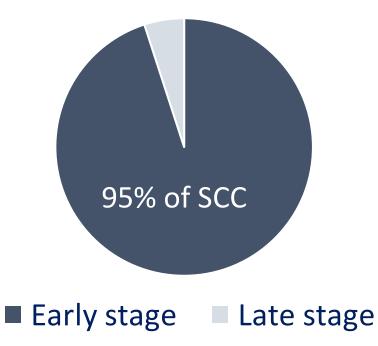
Christine J. Ko, MD, FOUNDER Professor of Dermatology and Pathology >140,000 patient biopsies examined, >15,000 patient encounters

TEAM and CONSULTANTS

Carolyn Lee, MD PhD

Assistant Professor of Dermatology, Stanford University, NIH-funded skin cancer research for >1 decade.

Lalit Golani, PhD Medicinal Chemist, Yale Center for Molecular Discovery



Ho-Joon Lee, PhD Research Scientist, Yale University, Department of Genetics

Skin cancer: The need

1 in 5 Americans with skin cancer by age 70

Squamous cell carcinoma (SCC): 1.8M cases/yr 2nd most common skin cancer

Treatment is lacking for early stage tumors – we will address this

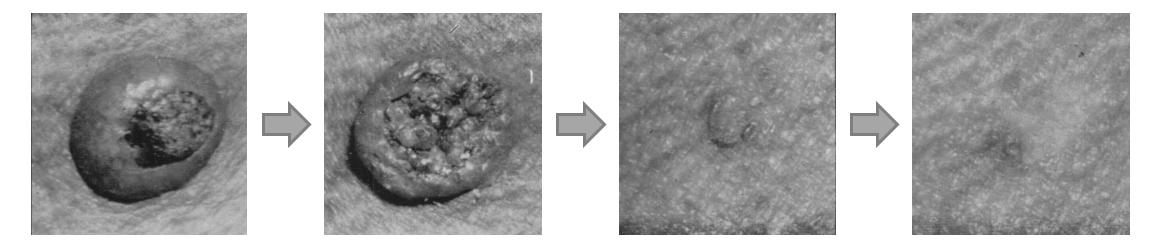
Early stage (< 2 cm) No medical treatment ~\$2 billion market value

Late stage Cytotoxic chemotherapy EGFR inhibitors (e.g. cetuximab) PD1 inhibitors (e.g. cemiplimab, pembrolizumab)

Early stage SCC: Surgery is effective BUT...

Even for 1 lesion, scars can be disfiguring

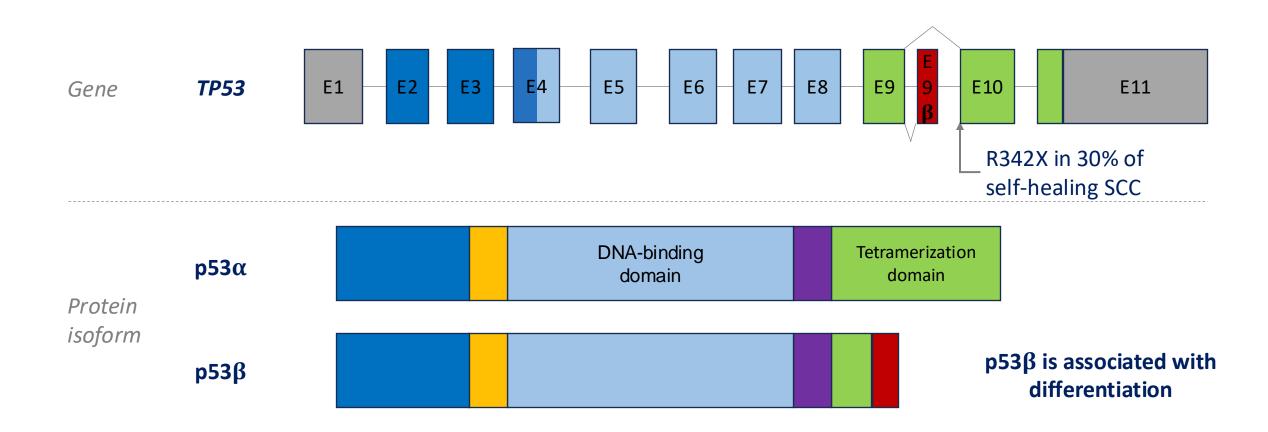
Multiple scars from consecutive surgeries



Many lesions, at the same time, in 1 patient; simultaneous surgery not feasible

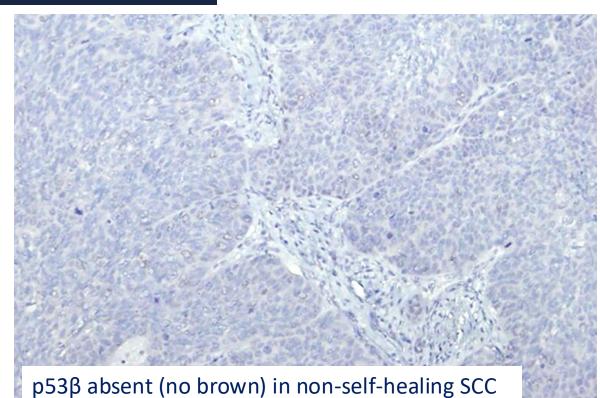
Your body can cure SCC

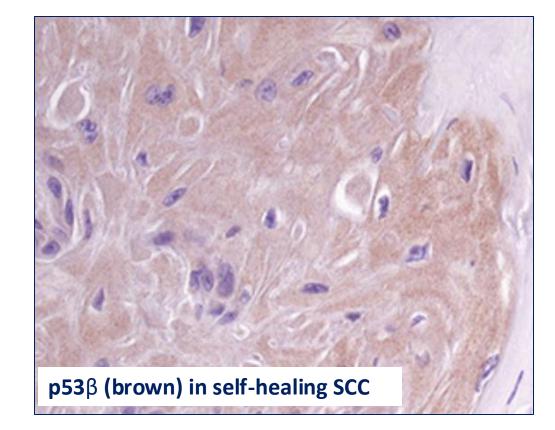
A minority of SCCs can spontaneously regress on their own


1 month: Cancer disappears with minimal scarring

Our research pinpoints **differentiation as the mechanism** Skin differentiation = dead layer of skin

Source: Fouracres FA et al. Br J Canc 1953;7:58-64, Zito G...Ko CJ, et al, Nat Commun 2014, Ko CJ, et al, J Am Acad Dermato, 2012

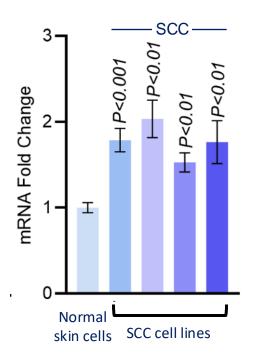

Differentiation cures SCC via the p53 pathway

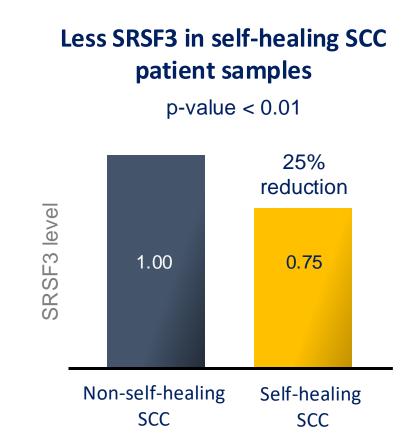


Source: Lim YH...Ko CJ, J Invest Dermatol 2016; Ko CJ, et al, J Am Acad Dermatol 2017

Differentiation cures SCC via the p53 pathway

<u>Key player</u> The heroine: p53β

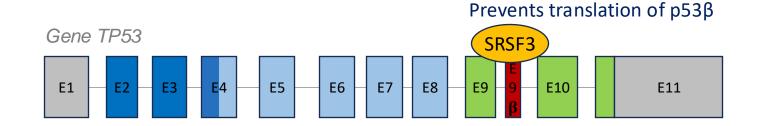

Can we use this p53β signal to induce differentiation and cure cancer?


Skin differentiation = Cancer regression and cure

SRSF3 levels as a surrogate of p53β **levels** (SRSF3 opposes p53β)

Key player The villain: SRSF3

Higher SRSF3 in SCC cell lines



Blocking SRSF3 promotes alternative splicing of $p53\beta$

<u>Key players</u> The heroine: p53β The villain: SRSF3 The knight: SRSF3 Blocker


Expression of oncogenic SRSF3 opposes p53β by preventing translation

SRSF3 Blocker lowers SRSF3 levels and in turn increases p53β

without

SRSF3 protein

with

SRSF3 Blocker

p53β

Oral use of SRSF3 leads to tumor regression

<u>Key player</u> The knight: SRSF3 Blocker

Oral use of **SRSF3 Blocker** (small molecule) in mice:

Complete regression of carcinoma in mouse model With 2 weeks of treatment, **5 of 6 tumors showed complete cancer** cure

No treatment

Low dose

SRSF3 Blocker

High dose

A novel topical SRSF3 Blocker is needed for SCC

Summary of the biology...

Cancer SRSF3 p53β

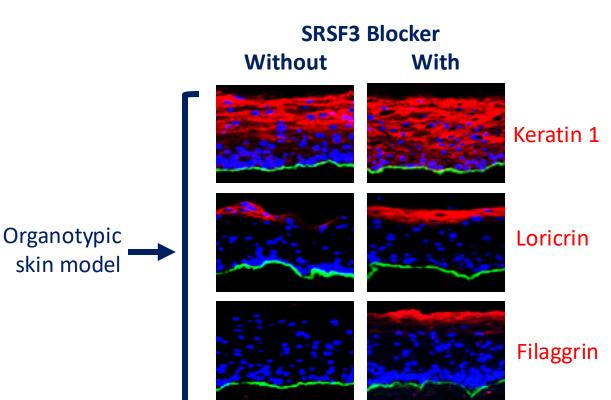
Cure (SRSF3 blocker)

p53β

Our strategy to address an unmet need...

SRSF3 Blocker oral use: good safety profile in mice but not optimized for topical use

Even safer: Topical/non-systemic SRSF3 blocker for SCC

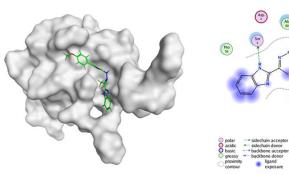

Novel: non-oral use of SRSF3 Blocker

Key player The knight: SRSF3 Blocker

Blocking SRSF3 **locally in skin normalizes skin differentiation and promotes cancer regression** in 3 relevant disease models on a molecular level:

- 1. Cell culture
- 2. Organotypic model
- 3. SCC cell lines

Provisional patent filed



Differentiation proteins (red) are upregulated

Source: Ko and Lee, 2024 submitted

SRSF3 Blocker to novel compounds

SRSF3 Blocker: Base compound

Molecular weight 363 Log P 4.59 Low affinity

11 confidential compounds for composition of matter

In the last month, with YCMD medicinal chemistry, we designed novel compounds

Source: Ko and YCMD, 2024, confidential data

Blavatnik funds for two parallel aims

H1 2025

H2 2025

H1 2026

Preclinical confirmation of 11 (+ from Aim 2) novel compounds

Demonstrate efficacy of novel compounds for SCC

Validate *in vitro* and *in vivo models* of skin cancer at nanomolar concentrations <u>with</u> topical/localized use **Dose response** comparison with known SRSF3 Blocker

Aim 2 \$200k

Aim 1

\$100k

Improve & expand on known SRSF3 Blocker (Dr. Golani, Dr. Ho-Joon Lee)

Optimize hits, expand existing patent protection for families of SRSF3 blockers

Co-crystallize SRSF3 Blocker and SRSF3 In silico screen for small molecules

HTS screen as needed; initial med chem optimization Value inflection point: Optimized lead compound for localized use in skin (topical, percutaneous, intralesional)