

Targeting Non-Tuberculous Mycobacteria with Al-Designed Antimicrobial Peptides

Jose Gomez, MD, MS

Pulmonary, Critical Care and Sleep Medicine Yale University School of Medicine

Team Leader

Jose Gomez, MD, MS Associate Professor

Director of Precision Pulmonary Medicine (P²MED) at Yale PCCSM

MD

- Board certified in pulmonary medicine
- Board certified in critical care

MS

Computational biology and bioinformatics

Antimicrobial Resistance (AMR) is a Major Problem

AMR Deaths in Millions

2021

2050

Attributable

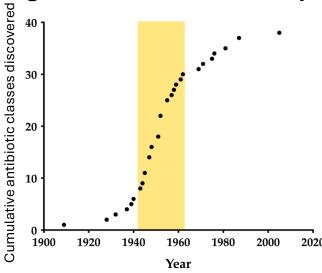
1.9

Associated

8.2

Mycobacterium abscessus is a highly resistant Non-Tuberculous Mycobacteria (NTM)

NTM Treatment is toxic and prolonged often lasting more than a year

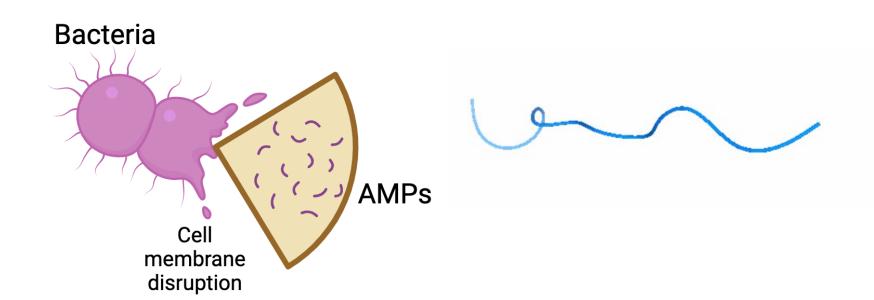

The prevalence of NTM is increasing by 8% annually worldwide

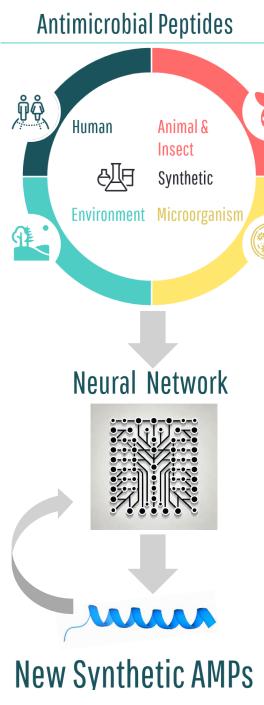
Large unmet need: Novel mechanisms of action aimed at NTM and other highly resistant organisms are lacking

Antibiotics Alone Will Not Solve AMR:

We are past the Golden age of antibiotic discovery

Stennett et al. Antibiotics 2022




Lancet 2024; 404:1199-226

Synthetic Antimicrobial Peptides (STAMPs)

Why STAMPs?

Broad antimicrobial activity Less resistance vs. antibiotics

Our Platform for STAMP Design

Al Design

Our neural network can design thousands of novel STAMPs with potential activity

Screening

We synthesized and validated 200 STAMPs against M. Abscessus

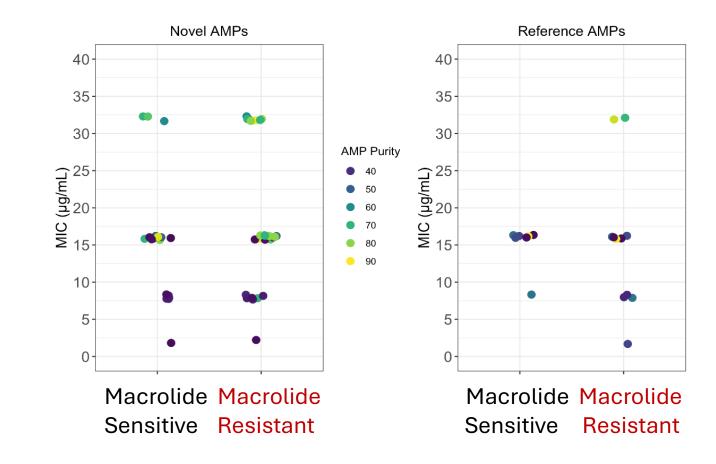
Hits Current IP

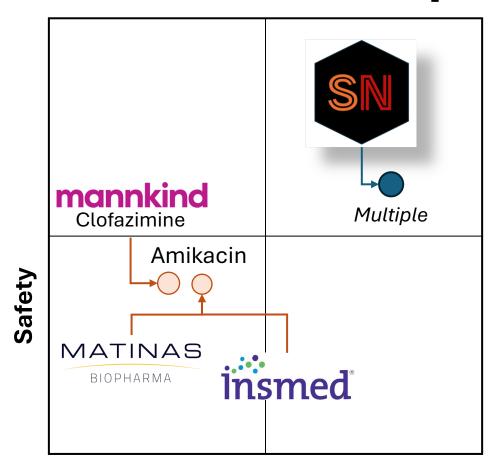
We have identified multiple novel STAMPs with activity against M. Abscessus

Superior Performance

Our approach is 1000-fold better than a peptide array method

Accelerated IP Expansion


Our proprietary
positive and negative
data, and new
algorithm are unique
advantages for
STAMP development


AI-STAMPs are Active Against Macrolide Sensitive and Resistant M. Abscessus

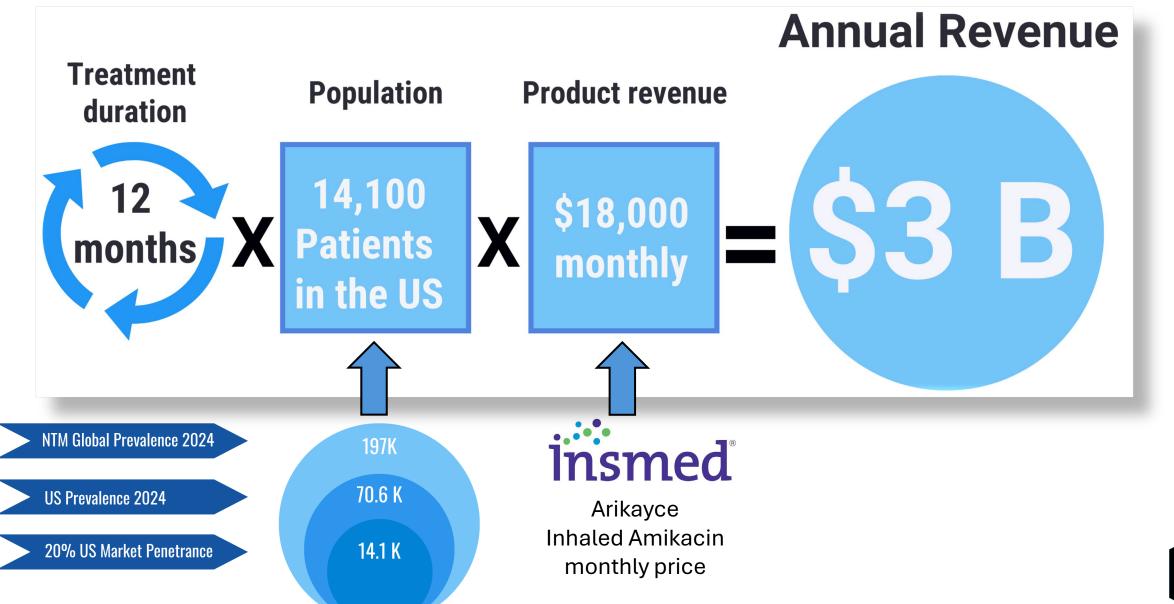
Example of our technology

- Mycobacteria (such as M. Abscessus) are clinically relevant bacteria that cause lung disease
- Macrolides are central to the treatment of M. Abscessus, but development of resistance is a significant therapeutic challenge
- Here we show how multiple novel
 STAMPs are active against
 macrolide sensitive and resistant
 M. Abscessus

Competitive Analysis

SN STAMPs

Innovation: AI-Designed STAMPs exploit a new pathway and are new chemical entities (IP).


Safety: Our iterative protein design accelerates the identification of highly potent STAMPs while eliminating structures associated with increased toxicity.

Competitors

Innovation: Reformulation of antibiotics that have been in use for over 50 years.

Safety: Known multiorgan toxicity

Market Potential for STAMPs in NTM Lung Disease Treatment

00 **NEW Current IP Portfolio** Mid-Term **Short-Term** <u> Long-Term</u> In vivo Broad indications Phase I-II Validation **Patents Studies for** of STAMPs NTM for STAMPs for NTM **STAMPs** Blavatnik 150 **Investment in Trade Secrets** (ن:) 100 2025 **AI Algorithms** 50 **Negative Information** 0 2025 2026 2027 2028 2029 >2030 GMP 00 PK/PD of Medicinal **Evaluate Evaluation Evaluate Evaluate GMP-compliant STAMPS** in **Toxicity in** Second **Activity of Activity Chemistry Synthesis** Lead Mice **Against** Generation to Optimize Mice

\$120,000 In Vivo Validation

STAMP in

Mouse

Model of

Abscessus

\$80,000 Additional Targets

STAMPs

Other NTM

and

Resistant

Bacteria

\$100,000 IND-Enabling

Potency of

Lead

STAMP

Appendix

Details Market Opportunity

Australia Canada European 5 Japan Korea United States

Estimated Prevalence of NTM Lung Disease in 2024

Total 123

Market Penetrance 40%

40%

Assumptions

- 12 Months: Minimal duration of NTM lung disease
- \$18,000: Arikayce monthly price in the US

Estimate

- Similar monthly price= \$18,000
- Duration of Rx= 12 months
- US market penetrance=20%

Market Penetrance 20%

20%

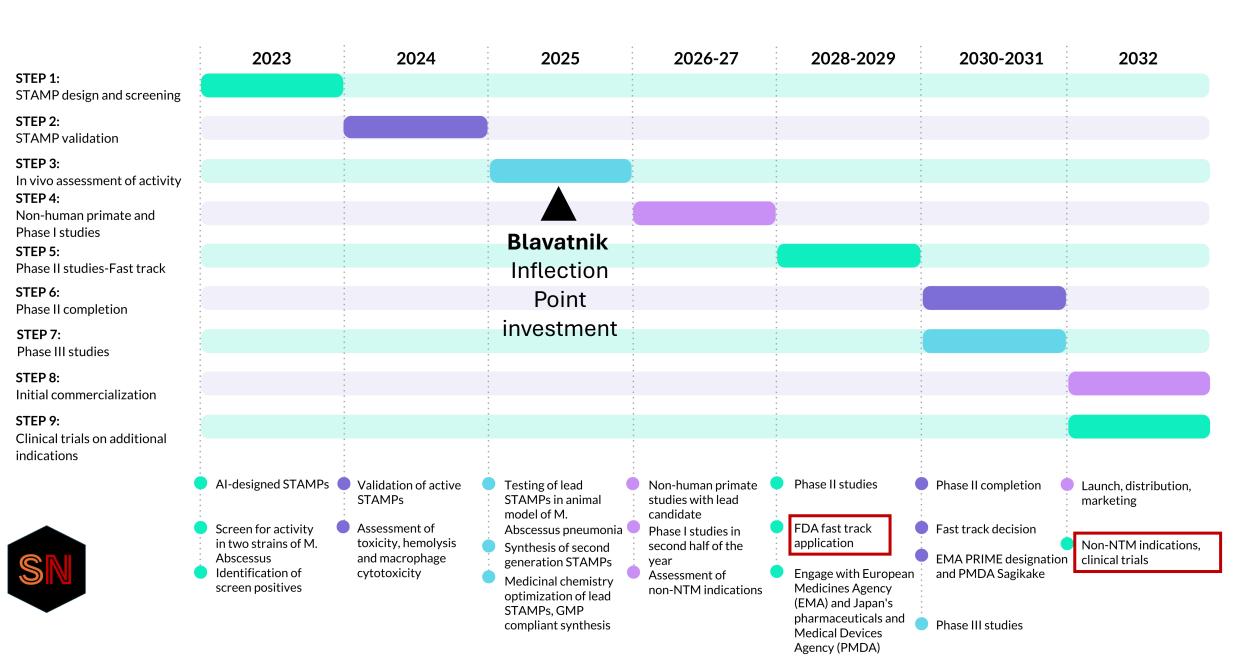
1344

5466

8537

7400

Total Annual in the US \$3,050,352,000



Details Competitive Landscape

Company	Product	Current Status	Total Revenues
insmed	Arikayce: Amikacin liposome inhalation suspension	Commercially available	\$90.3 million 2 nd quarter 2024
mannkind	MNKD-101: Clofazimine inhalation suspension	FDA fast-track designation for NTM	
PARATEK	Omadacycline: IV and Oral	Phase II completed July 2024	
AN2Therapeutics	Epetraborole: Leucyl-tRNA Synthetase Inhibitor. Oral	Recent failure in EBO- 301 study	
SPER THERAPEUTICS	SPR720: ATP activity of gyrase. Oral	Phase IIa reported in Q4 2024 failed on NTM vs. placebo & hepatotoxicity	
MATINAS	MAT2501: Oral amikacin	Phase I	
CRESTONE	CRS0393: MmpL3 inhibitor	Preclinical	
VAST Therapeutics	Nitric oxide inhalation	Preclinical	
endolytix	ENTX_001: Enzymatic degradation of lipid wall	Preclinical	

Existing AMPs and Patents

- Teixobactin (2013). Binds to lipids II and III in the bacterial cell wall. NovoBiotic Pharmaceuticals has been issued two US patents: 9,163,065 and 9,402,878). In preclinical development.
- Lugdunin (2016). International patent: WO2016151005A1.
- Malacidins (2018). US: 16617052
- Mainly activity against gram positive pathogens