An optical-based wearable for non-invasive continuous blood glucose monitoring (NI-CGM)

Jung Han, Professor of Electrical & Computer Engineering Nov 15, 2024

We are an experienced team out of Yale with a track record of developing technology and IP in advanced optical sensors

Lead investigator: Jung Han, PhD

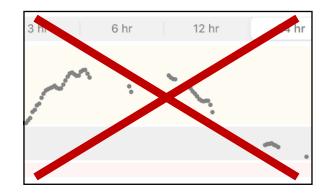
- William Norton Professor and Chair of Electrical & Computer Engineering
- National Academy of Inventors fellow, co-founder of 3 Yale spinout startups

Business lead: Richard Andersson, MEng

- Associate Director of Business Development at Yale Ventures
- Supported Prof. Han to file 14+ patents for this technology (10+ licensed)

Clinical collaborator: Stuart Weinzimer, MD

- Professor of Pediatric Endocrinology & Diabetes at Yale School of Medicine
- 20+ years of human research experience in testing glucose sensor technologies


Reliable and accessible NI-CGM is a big need: our compact, accurate, cost-effective sensor will be the next frontier

Uncomfortable

All current solutions have one or more limitations

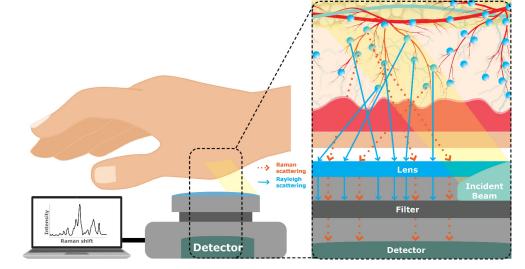
Error-prone

Bulky, expensive

Our technology unlocks all benefits

Continuous, accurate

Miniaturized wearable



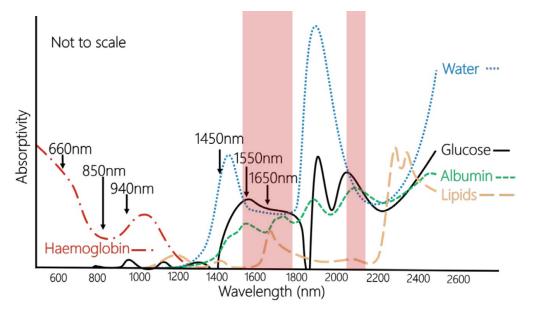
Enables personalized health insights and better outcomes for everyone

Two main challenges in NI-CGM after decades of studies: optical probes emerge the most promising

Challenge #1: Glucose signal is hard to isolate (Lots of other stuff! Water, fat, protein)

<u>Challenge #2</u>: High intra/inter-person data variance (Chemical, biological, physical variables)

Optical spectroscopy for <u>under-skin</u>, <u>molecular</u> probing of BG


2017

1994

2024.

We have a right to win because we are solving two critical challenges: (1) Technological and (2) Analytical

Solution #1: Multiple short-wave infrared (SWIR) wavelength for glucose fingerprint

Why now? We have the first and only technology to make compact and costeffective SWIR micro-lasers

Solution #2: Machine learning (ML) to analyze noisy data

Why now? Large AI models have enabled precise, accurate, individualized analytics

Yale

Campbell, et al. (2020) "Development of a discrete spectrometric NIR reflectance glucometer"; Srichan, et al. (2022). "Non-invasively accuracy enhanced blood glucose sensor using shallow dense neural networks with NIR monitoring and medical features."

Our unique technology unlocks a multi-billion dollar need: large immediate market with huge growth potential

\$1B Immediate Target (assume 2-3% penetration)

< 0.1 mm

Our **patented component** can be put in any wearable (existing or new) – this is a very big TAM!

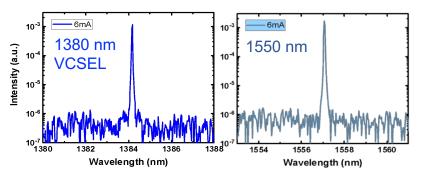
We have ready customers and partners waiting to license the **miniaturized module (new IP)** that we are developing \$29B share in consumer wearables^{2,3}

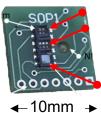
\$69B TAM (2028, 15% CAGR) in all wearable healthcare devices¹

We are the only solution that delivers all the specific features required for an optical NI-CGM

Design level	Our key property advantages	LED	NIR VCSEL	EEL
Material	Laser (high radiancy)1300~2200 nm range	X Not laser (low radiancy)	X < 1000 nm only	
Component	• <\$1 cost / unit	No other	competing s	X High, olution ^{10/unit}
Device	 mm-scale footprint 	meets	all these crit	erialig, ∼cm scale
Application	 Any wearable form factor (smart device, patch, etc.) 	X Needs thin skin-depth		X Limited by size

Our technology (material, chip) is already well-protected by 14+ patents, with room for IP creation as we move from component to device and application level

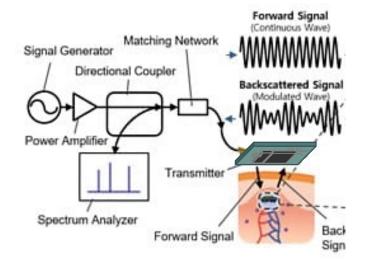



\$300K enables us to develop a patented feasibility prototype, and the first step toward a better clinical tool

Develop chips Month 1-6: \$125K

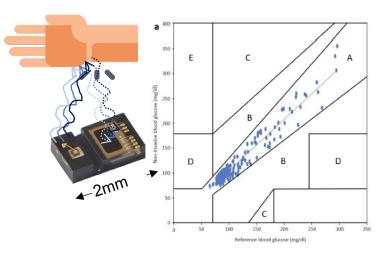
Develop device Month 6-9: \$75K

- Develop chips @ 1800~2100nm (1300~1750 already achieved)
- Laser and PD Integration
- Design circuitry, ADC, driver



SWIR sensors: multi-wavelengths for unique glucose fingerprint

Photodiode (PD) detector


- Collect finger / wrist signal
- Analyze data with ML/AI, study sensing modality
- Refine electronics and sensor placement

Month 10-15: \$100K

Apply in-vivo

- Partner with Yale clinician
- Collect continuous-wear signal and baseline
- Miniaturize sensor head and electronics

