Cutting-edge therapy for refractory B-cell malignancies and autoimmune diseases

Developing a New Generation of Orally Bioavailable Selective GSK3B Inhibitors

World Class Team in B-Cell Malignancy and Drug Development

Markus Müschen, MD-PhD

Yanzhi Feng

Yulia Surovtseva, PhD Lolahon Kadiri, MD-PhD

Shalin Kothari, MD

Victor Batista, PhD

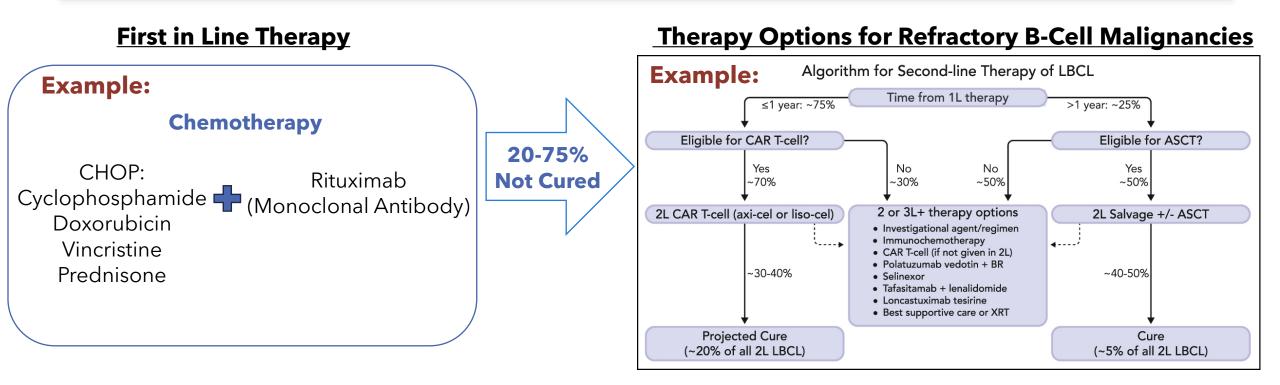
Arthur H. and Isabel Bunker PhD candidate. Professor of Hematology; Müschen and Chen Center for Molecular Director, Center of Molecular laboratories and Cellular Oncology; Chief, Division of Basic Science, Yale Cancer Center

Yale school of medicine

Director of the Yale Discovery

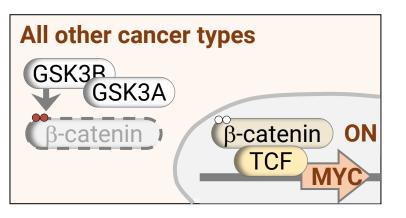
Associate Director of Yale Ventures

Assistant Professor of John Gamble Kirkwood Business Development at Hematology; Clinician Professor of Chemistry Lead, Cancer Biology Training Program; Core Faculty, Medical Oncology and Hematology Fellowship Program


Urgent need for enhanced therapies in Refractory B-cell malignancies

 <u>Refractory B-Cell Malignancy</u> is a form of B-Cell lymphoma or leukemia that <u>does not respond to</u> <u>standard treatments or relapse quickly after initial response</u>. This cancer continues to progress despite therapeutic efforts, <u>making it challenging to manage and control</u>.

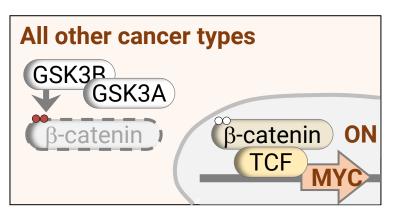
The current FDA-approved therapies for second, third, and fourth-line treatments **do not have favorable safety profiles** and there is **room for improvement in terms of efficacy**. All Cancer **treatments require stay at healthcare facility/assistance** due to continuous infusion drug delivery


The journey of a patient with refractory B-cell lymphoma

*There is a need for more effective and safer 2nd or 3rd Line Therapy Options for Refractory B Cell Lymphoma (Highly Toxic and Severe Long-Term Effects, Need to Be at The Hospital)

Our Discovery:

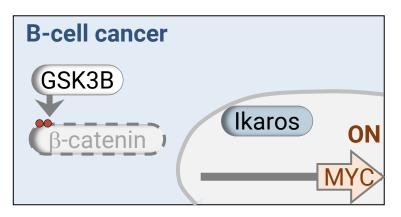
GSK3B-mediated degradation of β -catenin -a unique vulnerability of B-cells


GSK3A/B are the kinases that induces degradation of β -catenin

 β -catenin pairs with TCF for <u>activation</u> of MYC:

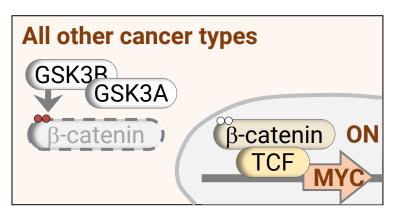
Cells proliferate

Our Discovery:


GSK3B-mediated degradation of β -catenin -a unique vulnerability of B-cells

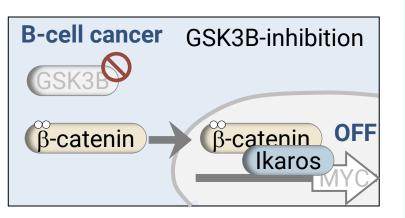
GSK3A/B are the kinases that induces degradation of β -catenin

 β -catenin pairs with TCF for <u>activation</u> of MYC:


Cells proliferate

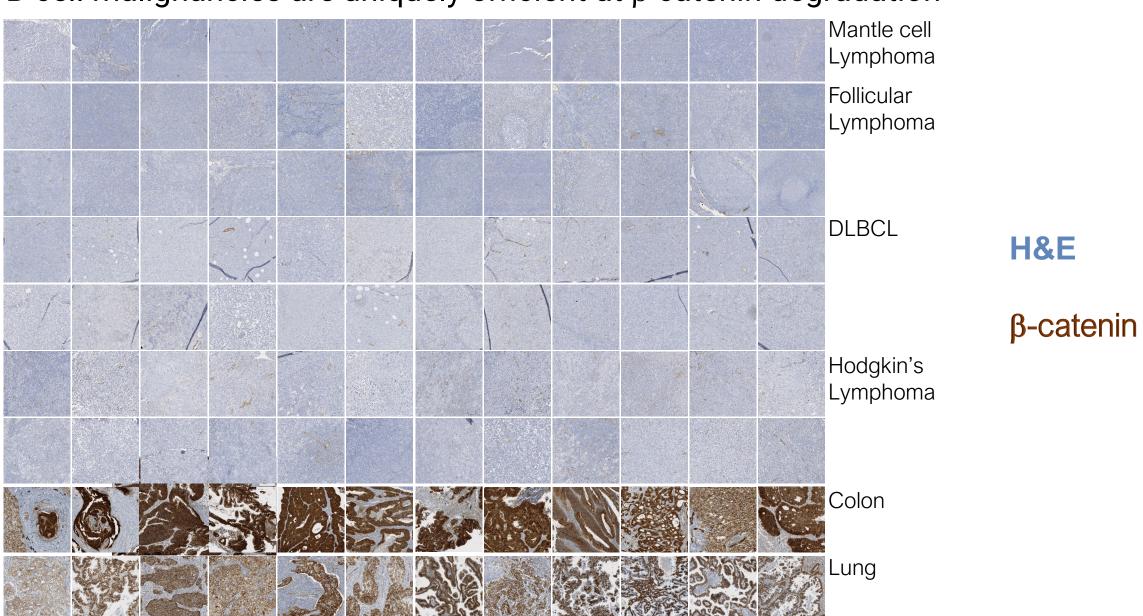
In B-cells, β -catenin is barely detectable, efficiently degraded by GSK3B.

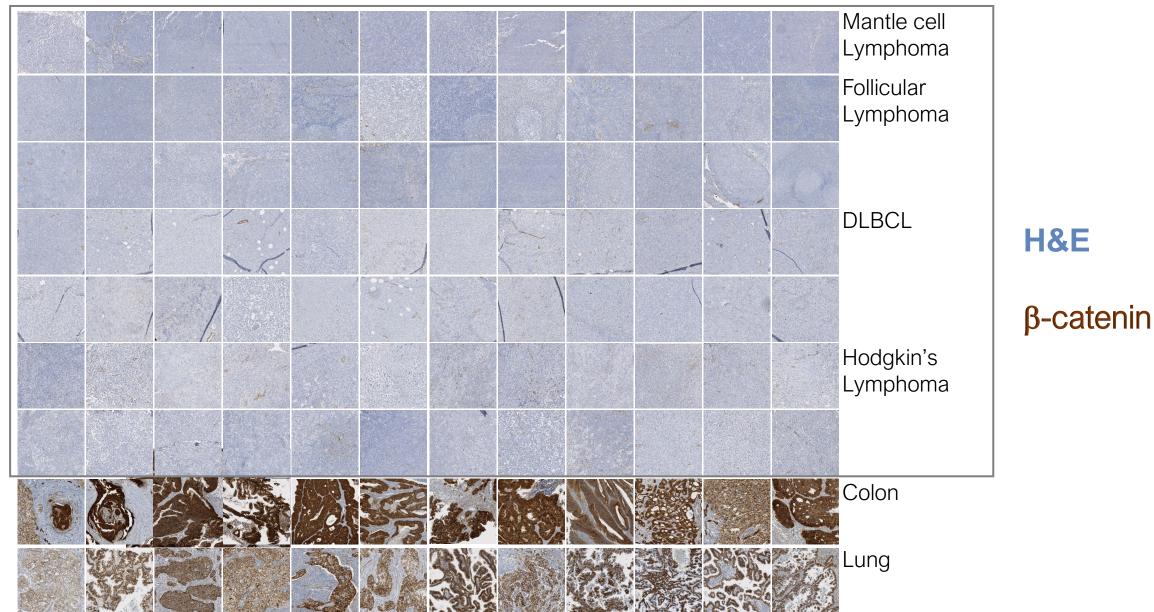
Our Discovery:


GSK3B-mediated degradation of β -catenin -a unique vulnerability of B-cells

GSK3A/B are the kinases that induces degradation of β -catenin

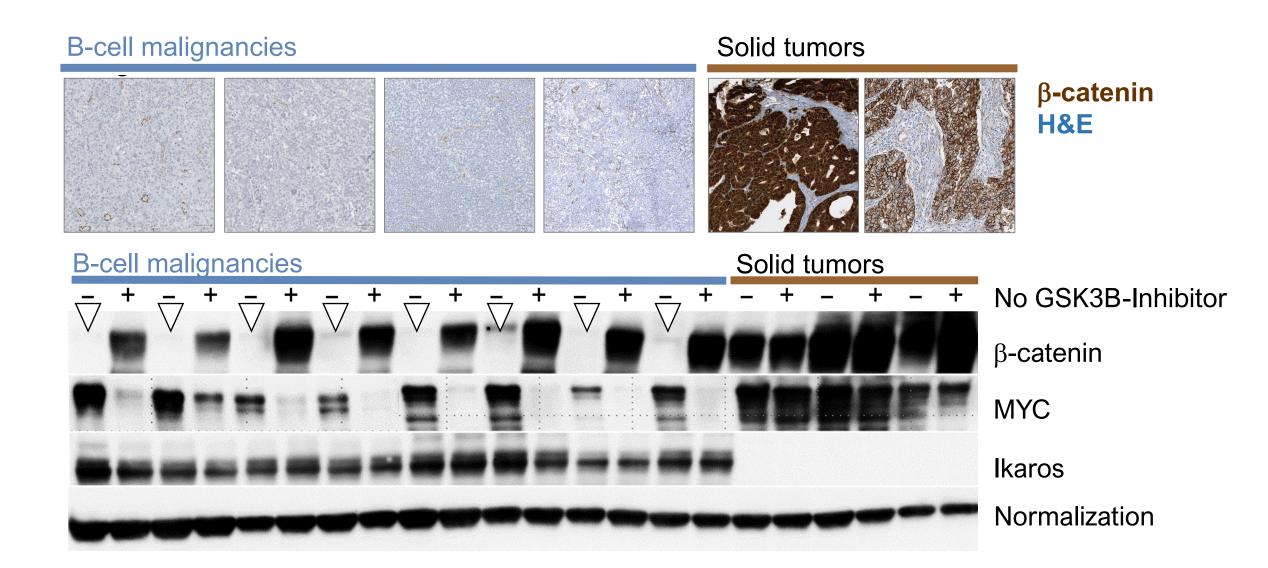
 β -catenin pairs with TCF for <u>activation</u> of MYC:


Cells proliferate

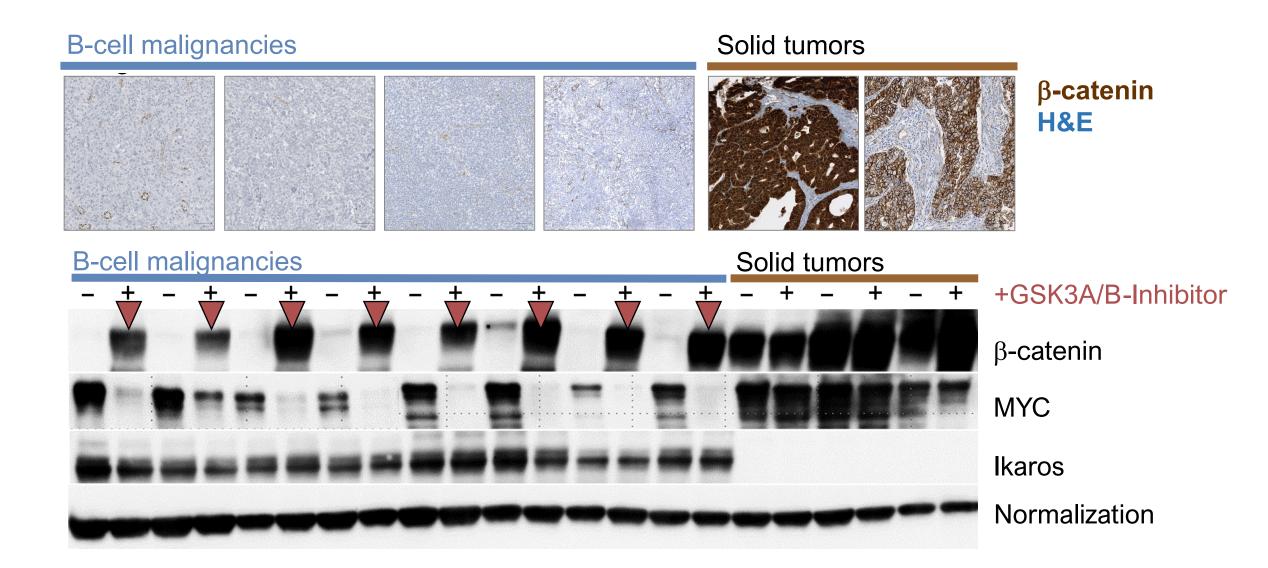

 β -catenin pairs with **Ikaros** for <u>repression</u> of MYC:

Cells stop dividing and die

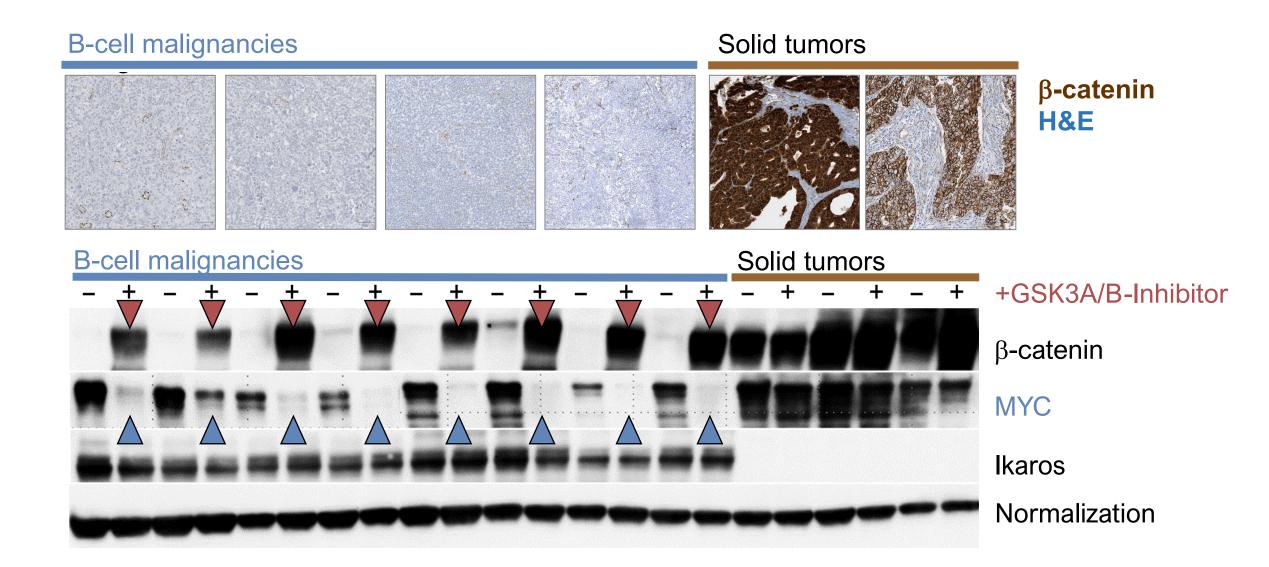
1 R01 CA282877-01
Project Title Targeting GSK3B in refractory B-cell malignancies
PI Name Müschen, Markus
Application
Award Document Number: RCA282877A FSR Accepted Code: N Snap Indicator Code: Impact Score: 10 Percentile: 1.0



B-cell malignancies are uniquely efficient at β -catenin degradation

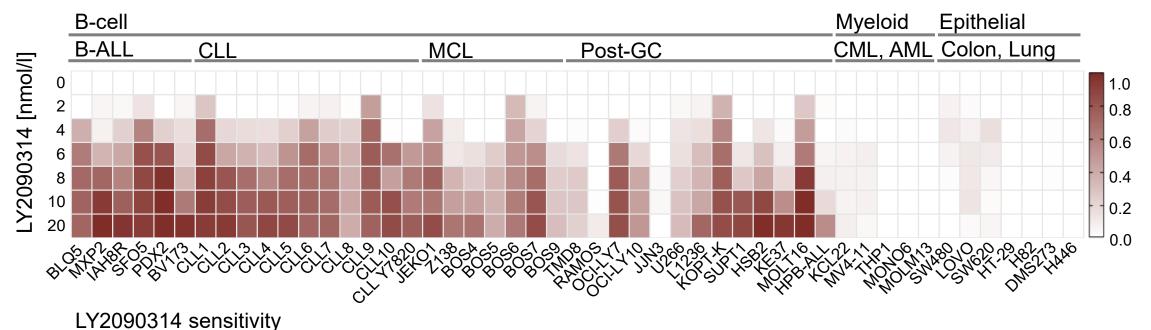


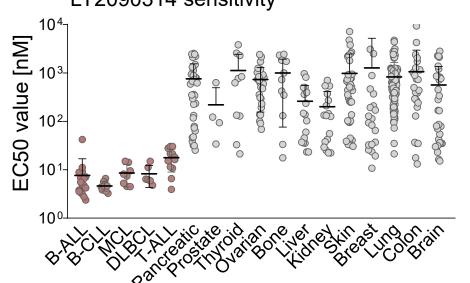
B-cell malignancies are uniquely efficient at β -catenin degradation


In the absence of GSK3B-inhibitor: β -catenin protein efficiently degraded

GSK3B-inhibitor disrupts β -catenin protein degradation: accumulation in B-cells

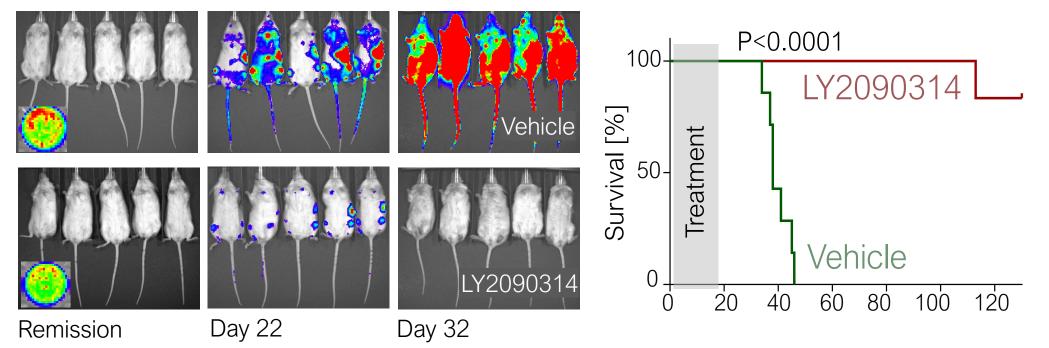
GSK3B-inhibitor disrupts β -catenin protein degradation and suppresses MYC


Only B-cells express Ikaros – required for MOA


B-cell malignancies

Solid tumors

GSK3B inhibitors for refractory B-cell malignancies


- GSK3B inhibitors are effective at low nanomolar concentrations in B-cell malignancies
- EC50 values in B-cell malignancies are ~400-fold lower than in other cancer types
- B-cell lymphomas with MYC-translocation are resistant to GSK3B inhibition

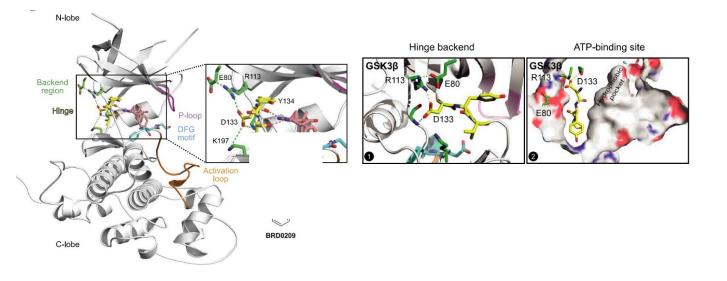
Our proposal: use GSK3B inhibitors in diseases caused by pathological B-cells

- Primary indication: refractory B-cell malignancies
- Secondary indication: B-cells and plasma cells in refractory autoimmune diseases

Our *in vivo* POC studies in PDX model support efficacy of GSK3B-inhibition

B-cell leukemia PDX

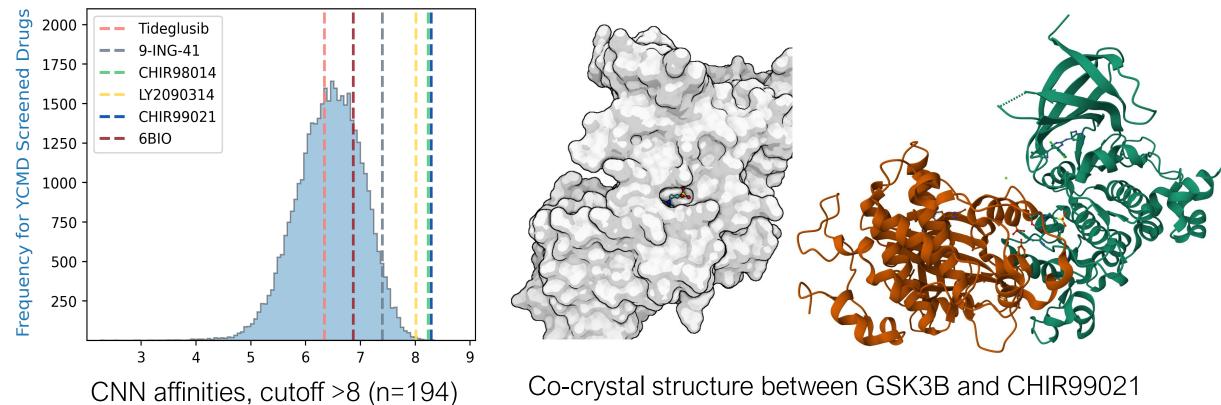
GSK3A/B dual kinase inhibitors in development demonstrate favorable safety & PK/PD profiles


Compound	Target	Indication	NCT Identifier	Outcome	Adverse effects
LY2090314	GSK3α GSK3β	Gastrointestinal cancer, pancreatic carcinoma	NCT01287520, NCT01214603, NCT01632306	Phase 1 and 2 No clinical responses Favorable PK/PD, safety profile	B-cell defect diarrhea
9-ING-41 Elraglusib	GSK3α	Advanced sarcomas, salivary gland carcinoma, pancreatic carcinoma, melanoma	NCT03678883, NCT05239182, NCT04239092, NCT05077800, NCT04906876, NCT03678883, NCT05116800, NCT04218071, NCT04832438, NCT05010629	Phase 1 and 2, no clinical responses, IND withdrawn, favorable safety profile	Hypoglycemia diarrhea
Tideglusib	GSK3α	Alzheimer's disease, myotonic dystrophy, supranuclear palsy, tooth repair (dentin)	NCT01350362, NCT00948259	Phase 1 and 2 No clinical responses, favorable PK/PD, safety profile	Hypoglycemia diarrhea
AZD1080	GSK3α GSK3β	Alzheimer's disease, Parkinson	Trial in Sweden, PMID: 23410232	Phase 1, favorable PK/PD, safety profile	B-cell defect diarrhea
CHIR99021 Laduviglusib	GSK3α GSK3β	NK-cell infusion for ovarian cancer, solid tumors, hearing loss	NCT03081780, NCT03213964, NCT03319459, NCT03616223	Phase 1 and 2 No clinical responses, favorable PK/PD, safety profile	B-cell defect diarrhea

...but require i.v. infusion and do not discriminate between GSK3A and GSK3B

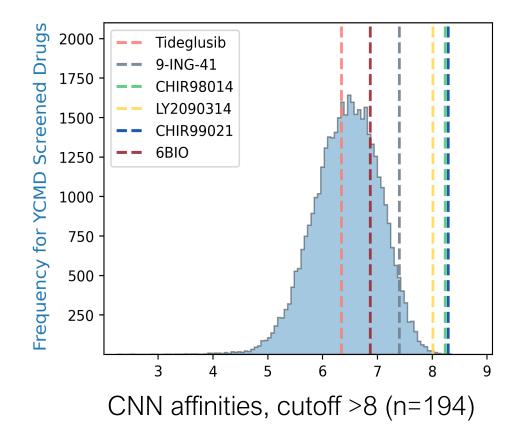
Compound	Target	Indication	NCT Identifier	Outcome	Adverse effects
LY2090314	GSK3α GSK3β	Gastrointestinal cancer, pancreatic carcinoma	NCT01287520, NCT01214603, NCT01632306	Phase 1 and 2 No clinical responses Favorable PK/PD, safety profile	B-cell defect diarrhea
9-ING-41 Elraglusib	GSK3α	Advanced sarcomas, salivary gland carcinoma, pancreatic carcinoma, melanoma	NCT03678883, NCT05239182, NCT04239092, NCT05077800, NCT04906876, NCT03678883, NCT05116800, NCT04218071, NCT04832438, NCT05010629	Phase 1 and 2, no clinical responses, IND withdrawn, favorable safety profile	Hypoglycemia diarrhea
Tideglusib	GSK3α	Alzheimer's disease, myotonic dystrophy, supranuclear palsy, tooth repair (dentin)	NCT01350362, NCT00948259	Phase 1 and 2 No clinical responses, favorable PK/PD, safety profile	Hypoglycemia diarrhea
AZD1080	GSK3α GSK3β	Alzheimer's disease, Parkinson	Trial in Sweden, PMID: 23410232	Phase 1, favorable PK/PD, safety profile	B-cell defect diarrhea
CHIR99021 Laduviglusib	GSK3α GSK3β	NK-cell infusion for ovarian cancer, solid tumors, hearing loss	NCT03081780, NCT03213964, NCT03319459, NCT03616223	Phase 1 and 2 No clinical responses, favorable PK/PD, safety profile	B-cell defect diarrhea

Key to developing paralog-specific GSK3B inhibitors to target the Asp¹³³->Glu¹⁹⁶ switch


Novel Strategy: Targeting "Switch" Instead of ATP-Binding Pocket

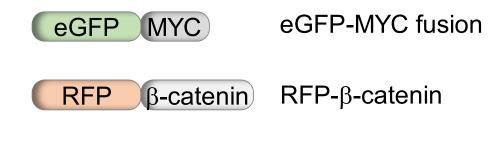
- The ATP Pocket (Pocket 1) homology is too similar between GSK3A and B, often leading off-target effects
- GSK3B implicated in other physiological pathways therefore inhibitor needs to be <u>reversible</u> to limit adverse effects
- **Targeting the "switch"** in the kinase hinge presents a rational design strategy to allow for specific GSK3B inhibition.
 - GSK3A: Glu¹⁹⁶
 - GSK3B: Asp¹³³

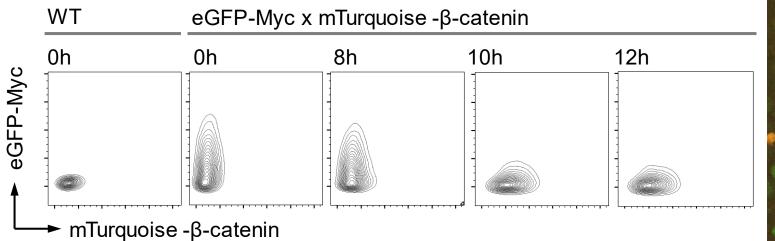
Our starting point for *in silico* screen:

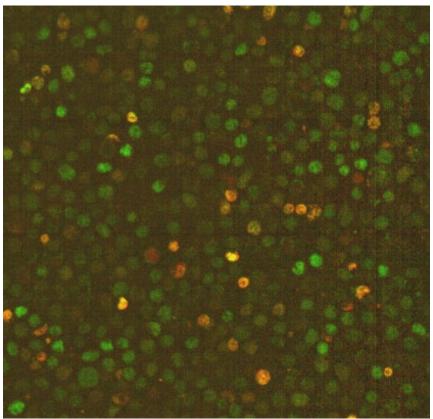

- GSK3B cocrystal structures
- Structural basis for GSK3B vs GSK3A selectivity is known

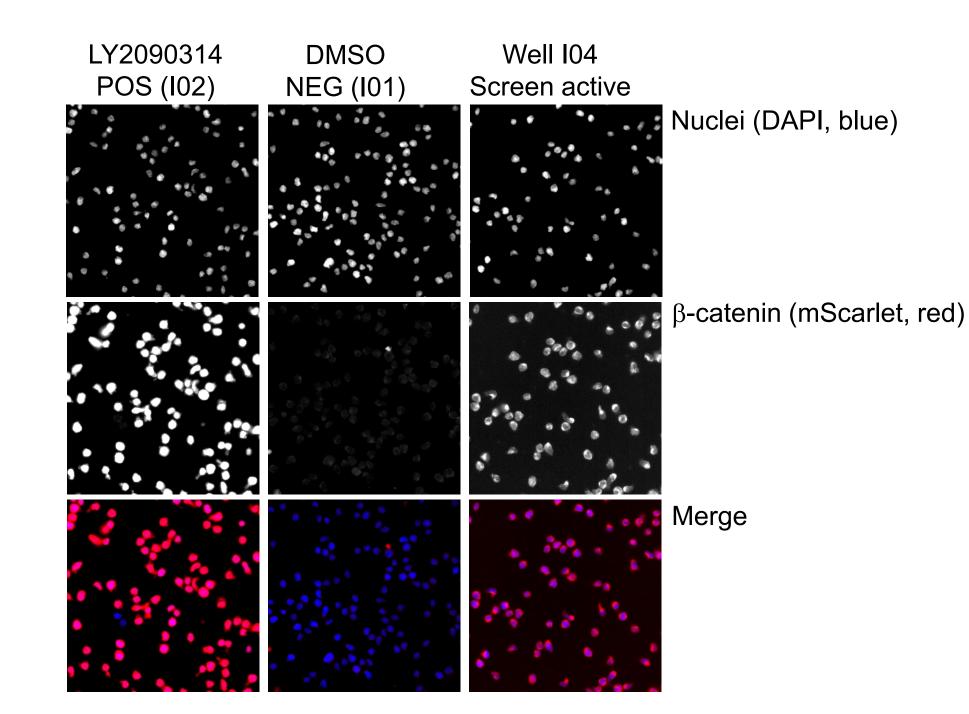
PDB 5HLN

HTS assay for optimized Class of GSK3B-selective, orally bioavailable Inhibitors


Positive control with existing GSK3 inhibitors


Design-away from non-selective tricyclic derivatives of a pyrazolo-tetrahydroquinoline scaffold (n=194, library of 460,000 compounds)

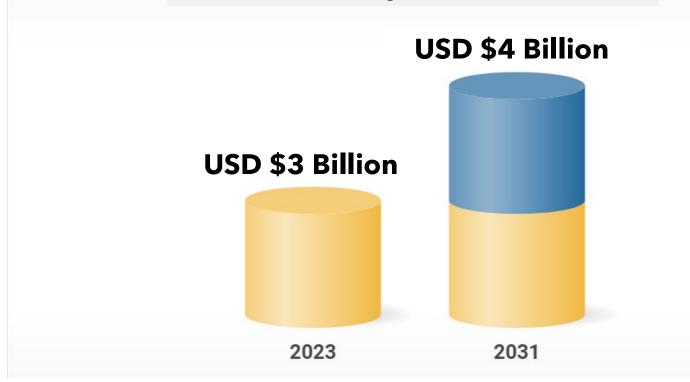

Lato to	Intox	and	grade	-grand
WU208911	10/200449	YU204133	¥U208849	YU1127900
atrico	Aqola	004040	and	privaro
YU214680	11208937	YU159594	YU280-461	10211500
-00000	00000	paned	50100	00,000
10225490	91,2235491	YU157474	712223336	YU203773
30Hpm	ando	Frage	3ªros	00200
9.2298159	YU235588	YL215435	YU172609	YU2633756
0000000	Solo	5 the	ordered	onzha
90597307	1008680	YU215487	10009255	YU019025


Proprietary GSK3B-inhibitor HTS assay: Select for Accumulation of β -catenin and Repression of MYC

Validation with 10 nM LY2090314

Currently approved therapies in **B-cell leukemia** show high response rates -but no oral delivery options

Company	Mechanism of Action	Delivery	Complete Response Rate	Objective Response Rate
BESPONSA inotuzumab ozogamicin kite biotuzumab o	Anti-CD22 ADC	IV	70%	78%
VOVARTIS KYMRIAH° (tisagenlecleucel) ^{Suspension}	Anti-CD19 CAR T- Cell	IV	68%	86%
GILEAD FECARTUS (brexucabtagene autoleucel) Services	Autologous Cell Therapy	IV	57%	87%

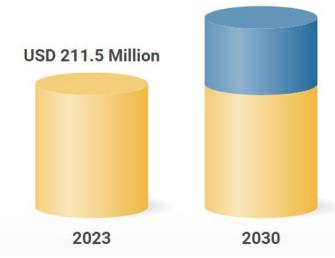

Novel Therapies are Still Being Developed in the **B-Cell Lymphoma** Space -but no oral delivery options

Company	Mechanism of Action	Stage	Indication
ر ^{ال} Bristol Myers Squibb®	Interferon Pathway Modifier	Phase II	R/R B Cell Malignancies
راله Bristol Myers Squibb®	Anti-CD19 CAR T-Cell	Phase I	B-Cell Malignancies
Roche	CD20xCD3 bispecific AB	Phase II	R/R Non-Hodgkin's Lymphoma
PRECISION BIOSCIENCES	Allogenic CAR T-Cell	Phase I/II	R/R Non-Hodgkin's Lymphoma, R/R ALL

Refractory B -cell malignancy market size is growing

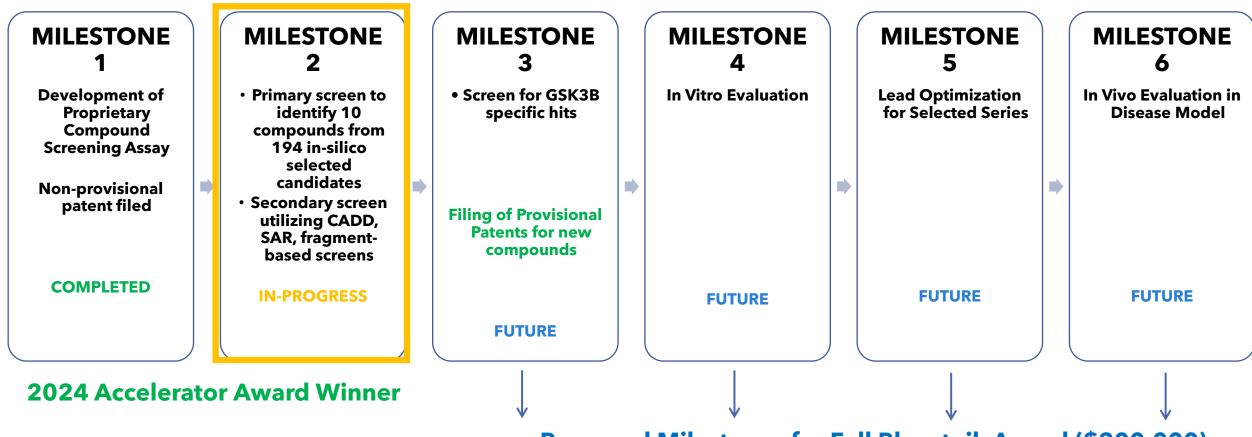
Refractory B-Cell Malignancy Market

Market forecast to grow at a CAGR of 4.3%


Secondary indication:

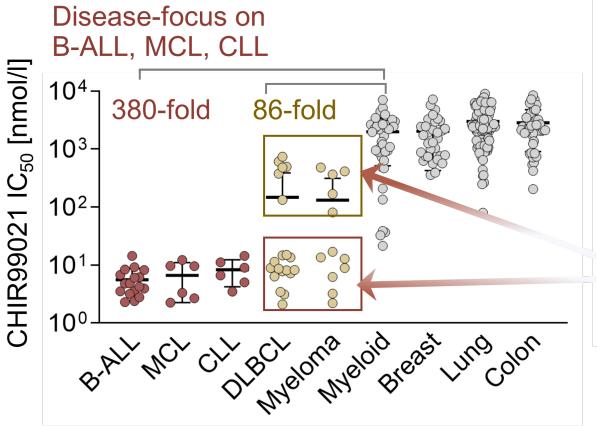
B-cell autoimmune diseases landscape, market size is growing

Systemic Lupus Erythematosus (Sle) Drugs Market


Market forecast to grow at CAGR of 6.4%

USD 325.6 Million

Drug	Company	Target	Phase
Anifrolumab	AstraZeneca	IFN/Interferon pathway	Approved
Obinutuzumab	Roche	Anti-CD20 mAb	Ш
Dapirolizumab pegol	[®] Biogen	Anti-CD40L (PEG-conjugated)	111
BIIB059	Biogen	Anti-BDCA-2 mAb	
Telitacicept	🛜 RemeGen	Fusion BLyS/APRIL inhibitor	11/111
Daxdilimab/HZN-7734	HORIZON	Ant-ILT7 mAb	II
Fenebrutinib	Genentech	BTK inhibitor	II
PF-06700841	P fizer	JAK1 and TYK2 inhibitor	II
AMG 570	AMGEN	bsAb (ICOSLxBAFF)	II
NKTR-358	Lilly NEKTA	R IL-2	II
Nipocalimab	Johnson &Johnson	Anti-FCRn mAb	II
BMS-986256	ullı Bristol Myers Squibb°	TLR 7/8 antagonist	II
KZR-616	KEZAR LIFE SCIENCES	Immunoproteasome Inhibitor	1/11
Lanalumab	U NOVARTIS	Anti-BAFF	II


Developing a new class of orally bioavailable and selective GSK3B Inhibitors

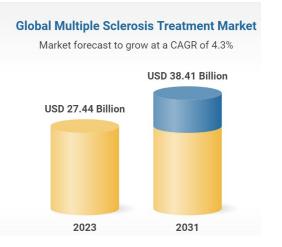
Proposed Milestones for Full Blavatnik Award (\$300,000)

Appendix

Refined market analysis for GSK3β-inhibitors: Prioritize patients with B-ALL, CLL and MCL

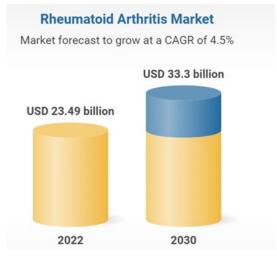
Disease focus:

- *MYC*-translocations do not occur in B-ALL, MCL, CLL
- Unique sensitivity of B-ALL, MCL, CLL to GSK3β-inhibition.
- Bi-modal distribution of other B-cell lymphomas based on presence or absence of *MYC*-translocation.


- We expect that patients with B-ALL, MCL, CLL will benefit the most.
- ~400,000 patients in the US

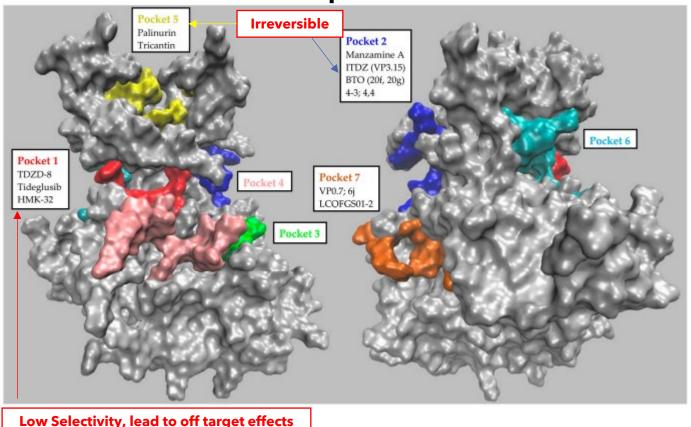
Multiple Sclerosis Approved Therapies Disease Landscape

Global Multiple Sclerosis Treatment MarketMarket forecast to grow at a CAGR of 4.3%USD 38.41 BillionUSD 27.44 Billion20232031


Drug	Company	Target	Phase
Gilenya	U NOVARTIS	sphingosine-1-phosphate receptor modulator	Approved
Aubagio	sanofi	Pyrimidine synthesis inhibitor	Approved
Copaxone	sanofi	Glatiramer acetate	Generic
Tecfidera	Biogen.	Dimethyl fumarate	Generic
Plegridy	Biogen	Long-acting PEGylated interferon	Approved
Lemtrada	sanofi	Anti-CD52 mAB	Approved
Ocrevus	Biogen	Anti-CD20 monoclonal antibody	Approved
Cladribine (Mavenclad)	EMD Serono	JAK1 and TYK2 inhibitor	Approved
Mayzent (Siponimod, BAF312	U NOVARTIS	S1P receptor agonist	Approved
Vumerity	Biogen	Prodrug of monomethyl fumarate	Approved
Zeposia (Zeposia)	راله Bristol Myers Squibb®	SP1 receptor agonist	Approved
Kysimpta (ofatumumab)	U NOVARTIS	Anti-CD20 mAb	Approved
Povory (ponesimod)	Janssen	S1P receptor agonist	Approved
Briumvi (Ublituximab)	TG Therapeutics	Anti-CD20 mAb	Approved

Multiple Sclerosis In Development Therapies Disease Landscape

Drug	Company	Target	Phase
Masitinib		c-Kit inhibitor	П
Fenebrutinib	Genentech	Irreversible BTK inhibitor	II
Evobrutinib	EMD	BTK inhibitor	Ш
ATX-MS-1467/ M2736	EMD	Immune-tolerizing agent	Ш
MN-166 Ibudilast	MEDICINOVA	IL-1 Beta antagonist, IL-6 inhibitor, TNF-alpha inhibitor	11
BIIB091	Biogen	BTK inhibitor	I
FREQ-162		Against novel remyelination target	Pre-Clinical


Oral Drug Rheumatoid Arthritis Landscape

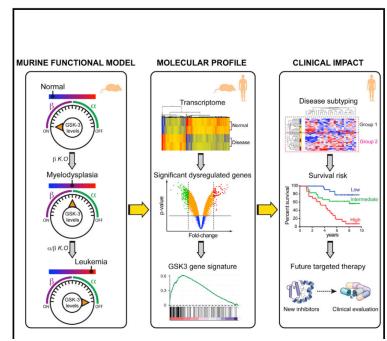
Drug	Company	Target	Phase
Xeljanz (tofacitinib)	P fizer	JAKi	Approved
Olumiant (baricitinib)	Lilly	JAKi (1/2)	Approved
Rinvoq (upadacitinib)	abbvie	Selective JAKi	Approved
PF-06650833	P fizer	IRAK4 inhibitor	11
PF-06651600	P fizer	JAK3/TEC inhibitor	II
Piclidenoson (CF101)	CANIFITE BioPharma Ltd	A3 adenosine receptor agonist	111
AZD9567	AstraZeneca	SGRM	II
Dazodialibep	HORIZON	CD40L antagonist	II
KT-474	sanofi	IRAK4 degrader	I
BAY1830839	BAYER	IRAK4 inhibitor	I

Previous Strategy to Develop Specific GSK3B Inhibitors is <u>Reversible Allosteric Binding</u> to <u>non-ATP pockets</u>

Binding Sites of Previous GSK3B Inhibitors In Development

- The ATP Pocket (Pocket 1) homology is too similar between GSK3A and B: Need to bind to GSK3B Specific Pockets to limit off-target effects
- GSK3B implicated in other physiological pathways therefore inhibitor needs to be <u>reversible</u> to limit adverse effects
- Other Pockets have not been fully investigated for selectivity between GSK3A/B
- Its possible that more pockets exist

Rationale for GSK3B-selectivity:


GSK3A has undesired effects on myelopoiesis and the CNS

Cancer Cell

HIUUC

GSK3 Deficiencies in Hematopoietic Stem Cells Initiate Pre-neoplastic State that Is Predictive of Clinical Outcomes of Human Acute Leukemia

Graphical Abstract

Authors

Borhane Guezguez, Mohammed Almakadi, Yannick D. Benoit, ..., Riccardo Masetti, Bradley W. Doble, Mickie Bhatia

Correspondence

mbhatia@mcmaster.ca

In Brief

Guezguez et al. show that progressive removal of glycogen synthase kinase-3 (GSK-3) signaling by *Gsk3b* allelic deletion results in an MDS state that, when combined with *Gsk3a* deletion, leads to AML. A molecular signature derived from *Gsk3b*-null cells has prognostic potential for MDS patients. Feasibility of HTS for GSK3B-selective compounds: The structural basis for paralog-selective HTS has been solved

SCIENCE TRANSLATIONAL MEDICINE | RESEARCH ARTICLE

CANCER

Exploiting an Asp-Glu "switch" in glycogen synthase kinase 3 to design paralog-selective inhibitors for use in acute myeloid leukemia

Florence F. Wagner,^{1*†} Lina Benajiba,^{2,3,4,5†} Arthur J. Campbell,¹ Michel Weïwer,¹ Joshua R. Sacher,¹ Jennifer P. Gale,¹ Linda Ross,^{3,4} Alexandre Puissant,^{3,4,6} Gabriela Alexe,^{2,3,4,7} Amy Conway,^{3,4} Morgan Back,^{3,4} Yana Pikman,^{2,3,4} Ilene Galinsky,⁸ Daniel J. DeAngelo,⁸ Richard M. Stone,⁸ Taner Kaya,¹ Xi Shi,¹ Matthew B. Robers,⁹ Thomas Machleidt,⁹ Jennifer Wilkinson,⁹ Olivier Hermine,^{10,11} Andrew Kung,¹² Adam J. Stein,¹³ Damodharan Lakshminarasimhan,¹⁴ Michael T. Hemann,¹⁵ Edward Scolnick,¹ Yan-Ling Zhang,¹ Jen Q. Pan,¹ Kimberly Stegmaier,^{2,3,4,*‡} Edward B. Holson^{1‡§}

Most Frequent B-Cell Malignancies

B-Cell Malignancy	Number of People Diagnosed in USA	% of People experiencing Relapsed/refractory B-Cell Malignancy
Chronic Lymphocytic Leukemia (CLL)	20,700	>20%
Hairy Cell Leukemia (HCL)	6,000	30-40%
Mantle Cell Lymphoma (MCL)	20,000	74%
Diffuse Large B-Cell Lymphoma (DLBCL)	80,000	30-40%
Follicular Lymphoma (FL)	15,000	20%
B-Cell Acute Lymphoblastic Leukemia (ALL)	80,000	20%