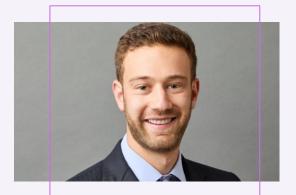


visionairy

Al Copilot for Eye Doctors

۲


Realtime Summarization and Chat

🕑 Diagnostic Assistance

•

Automated Documentation

Executive Team

Mac Singer, MD Co-Founder Ophthalmology Resident and AI Researcher

Qingyu Chen, PhD Scientific Co-Founder Assistant Professor of Biomedical Informatics and Data Science

Execution Team


Lucila Ohno-Machado MD, MBA, PhD Chair, Department of Biomedical Informatics and Data Science

Hua Xu, PhD Vice Chair, Department of Biomedical Informatics and Data Science

Zhenyue Qin, PhD Leading Multimodal AI Postdoctoral Associate

Anran Li, PhD Leading Trustworthy AI & Federated Learning Postdoctoral Associate

Xuguang Ai, MS Leading Software Development Software Engineer

Luciano V. Del Priore, MD, PhD Chair, Ophthalmology

Advisory Team

Team Experience

3

patents for AI assisted eye diagnosis and visual detection

Foundation Models

5+ foundation language models for medicine

20+

tools for medical professionals and biologists

Publications

Published in top journals including: Nature, Nature Medicine, Nature Machine Intelligence, Nature Aging, NPJ Digital Medicine

10+

Al models developed for eye care

Clinical Validation

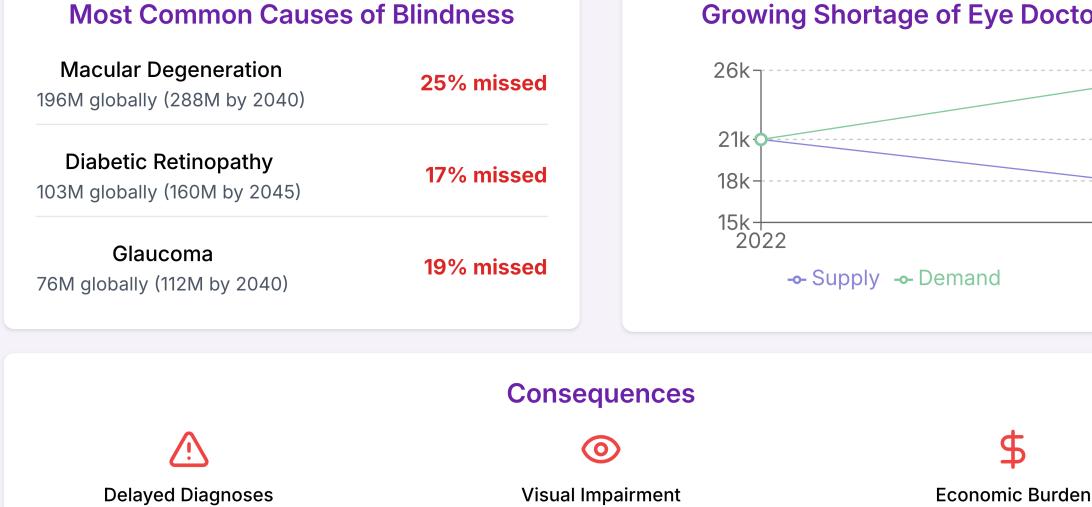
Randomized controlled trial with large language model Implementation in 10 sites with 2.6k participants

Schedule				
Time	Age/Gender	Visit Type	EC Status	YM Eye Events
7:45 AM	62 y.o. / M	Post Op	Sch	Scheduled
8:00 AM	74 y.o. / F	New Catara	Sch	Scheduled
8:15 AM	50 y.o. / M	Post Op	Sch	Scheduled
8:15 AM	50 y.o. / M	New Patient	Sch	Scheduled
8:30 AM	76 y.o. / F	Return Dilation	Sch	Scheduled
8:30 AM	39 y.o. / M	Return	Sch	Scheduled
8:45 AM	64 y.o. / F	Return	Sch	Scheduled
8:45 AM	67 y.o. / M	Return Dilation	Sch	Scheduled
9:00 AM	66 y.o. / F	Post Op	Sch	Scheduled
9:00 AM	72 y.o. / F	Post Op	Sch	Scheduled
9:15 AM	85 y.o. / F	Post Op	Sch	Scheduled
9:15 AM	79 y.o. / F	Return	Sch	Scheduled
9:30 AM	75 y.o. / F	Return	Sch	Scheduled
9:30 AM	59 y.o. / M	New Patient	Sch	Scheduled
9:45 AM	84 y.o. / F	Return Dilation	Sch	Scheduled
9:45 AM	76 y.o. / M	Return Dilation	Sch	Scheduled
10:00 AM	83 y.o. / F	Return	Sch	Scheduled
10:15 AM	73 y.o. / M	Return Dilation	Sch	Scheduled
10:15 AM	71 y.o. / M	Post Op	Sch	Scheduled
10:30 AM	81 y.o. / M	Return	Sch	Scheduled
10:30 AM	76 y.o. / F	Post Op	Sch	Scheduled
10:45 AM	61 y.o. / M	Return	Sch	Scheduled
12:15 PM	78 y.o. / F	Mychart Vid	Sch	Scheduled
12:45 PM	80 y.o. / F	Post Op	Sch	Scheduled
12:45 PM	75 y.o. / F	Post Op	Sch	Scheduled
1:00 PM	86 y.o. / F	Post Op	Sch	Scheduled
1:00 PM	84 y.o. / F	New Patient	Sch	Scheduled
1:15 PM	84 y.o. / M	New Patient	Sch	Scheduled
1:15 PM	69 y.o. / F	Post Op	Sch	Scheduled
1:30 PM	41 y.o. / M	Return	Sch	Scheduled
1:30 PM	77 y.o. / M	Return	Sch	Scheduled
1:45 PM	84 y.o. / M	New Patient	Sch	Scheduled
2:00 PM	72 y.o. / F	Return	Sch	Scheduled
2:15 PM	64 y.o. / F	Return Dilation	Sch	Scheduled
2:30 PM	71 y.o. / M	Return	Sch	Scheduled
2:45 PM	20 y.o. / F	Return Dilation	Sch	Scheduled
3:00 PM	62 y.o. / F	Return	Sch	Scheduled
3:15 PM	62 y.o. / M	Return	Sch	Scheduled
3:15 PM	84 y.o. / F	Return	Sch	Scheduled
3:30 PM	56 y.o. / M	Return	Sch	Scheduled

Schedule

Typical clinic schedule for eye doctor

After entering the patient's room...


1. Review patient chart

2. Take history

- 3. Perform exam
- 4. Review imaging
- **5.** Determine plan

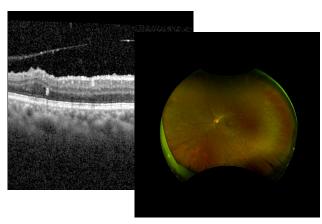
6. Document

Problem: Eye Diseases are Missed by Eye Doctors

Growing Shortage of Eye Doctors

visionairy

Al Copilot for Eye Doctors


Input Data

Clinical Notes

Medical Imaging

OCT, fundus photos, and other diagnostic images

Comprehensive AI Assistance

Interprets clinical data and imaging to provide real-time diagnostic support and **guardrails to limit missed diagnoses**

EMR Integration

Integrates directly into EMR and PACS

ቆ

Multi-center Training

Generalizable model trained on data from multiple locations

Û

Enterprise Security

Minimize data leakage, end-to-end encryption

Diagnostic Support and Efficiency Gains

Intelligent Assistance

Q	Real-time Disease Detection
	Al analysis of imaging data to catch early signs of
	disease

Smart Summarization & Chat

Instant patient history synthesis and clinical decision support

Automated Documentation

 \bigcirc

Structured note creation with billing optimization

Key Benefits

\uparrow

Enhanced Accuracy

Reduced missed diagnoses with AI support

40%

Time Savings Improved efficiency in patient care

Higher Patient Volume

Safe scaling of practice capacity

Base Eye Exam

Visual Acuity (Snellen - Linear)		Pupils	S				
	Right	Left		Pupils	APD		
Dist cc	20/40 +2	20/20 -1	Right	PERRL	None		
Correction	Glasses		Left	PERRL	None		
Tonomet	ry (Applanatio	on, 8:57 AM)	Visua	l Fields			
	Right	Left		Right	Left		
Pressure	15	15		Full	Full		
Pachyme	try (12/8/2015	5)	Extrac	ocular Movem	nent		
	Right	Left		Right	Left		
Thickness	543	537		Full	Full		
Goniosco	ру		Neuro	o/Psych			
	Right	Left	Orient	ed x3: Yes			
Temporal	3/ss/1+pig	3/ss/1+pig	Mood/Affect: Normal				
Nasal	3/ss/1+pig	3/ss/1+pig	Dilation				
Superior	3/ss/1+pig	3/ss/1+pig	Both eyes: 2.5% Neo Synephrine, 1.0%				
Inferior	3/ss/1+pig	3/ss/1+pig			lephrine @ 9:24 AM		

Progress Note

New Patient

Base Eye Exam

visual Ad	uity (Snellen		Pupils					
	Right	Left		Pupils	APD			
Dist cc	20/40 +2	20/20 -1	Right	PERRL	None			
Correction	: Glasses		Left	PERRL	None			
Tonomet	ry (Applanatio	on, 8:57 AM)	Visua	l Fields				
	Right	Left		Right	Left			
Pressure	15	15		Full Full				
Pachyme	etry (12/8/2015	5)	Extra	ocular Movemen	nt			
	Right	Left		Right	Left			
Thickness	543	537		Full	Full			
Goniosco	ру		Neuro	o/Psych				
	Right	Left		ed x3: Yes				
Temporal	3/ss/1+pig	3/ss/1+pig	Mood	Mood/Affect: Normal				
Nasal	3/ss/1+pig	3/ss/1+pig	Dilati	Dilation				
Superior	3/ss/1+pig	3/ss/1+pig		Both eyes: 2.5% Neo Synephrine, 1.0%				
Inferior	3/ss/1+pig	3/ss/1+pig		 Both eyes: 2.5% Neo Synephrine, 1.0% Mydriacyl, 2.5% Phenylephrine @ 9:24 AM 				

visionairy chat

Hi, what question do you have about eye care?

What is the differential diagnosis for a red painful eye? >

Value Proposition to Eye Care Practices

Optimize billing

Medical eye condition

Average reimbursement for medical insurance

Annual revenue increase per practice from catching missed diagnoses on routine visit

Improve efficiency to support higher volume

Al assistance for eye diseases improves clinician diagnostic accuracy and efficiency with time saving up to 40%⁷

Charge Per Patient Visit

Simple Value Proposition

- **\$** ~\$24 value per patient visit billing & efficiency
- ↗ Tiered Pricing Per Patient:
 - \$1 for documentation assistance alone\$4 for full clinical support
- I Practice keeps 80+% of created value

Optometrists	\$480M
40,000 × 3,000 patients/year × \$4	
Ophthalmologists	\$560M
20,000 × 7,000 patients/year × \$4	

Clear Market Size

Advantages of Pricing Model

Simplicity Easy to understand, track, and project Alignment Both parties benefit from practice growth/efficiency Low Risk No fixed costs or commitments **Cost Parity** Documentation tier on par with AI scribes

Market Penetration Strategy

TAM: \$1B Total Market

SAM: \$750M

Large Practices with Advanced IT (75%)

SOM: \$433M

Academic Centers - Early Adopters Private Equity - Revenue Optimizing Large Optical - Standard Purchasing

Growth Timeline

Competitive Analysis

Company	Function	Interactive	Integrated into EMR	Integrated into PACS	Specialty Specific Multimodal Foundation Model
Digital Diagnostics AEYE Health Eyenuk	Detects diabetic retinopathy in retinal photographs	×	×	×	×
Suki, Nabla Nuance, Ambience Abridge	AI scribe through ambient listening	×	\checkmark	×	×
visionairy	Clinical foundation model for eye care	~	~	~	~

visionairy advantage

Interactive co-pilot for eye doctors, with efficiency value of automated documentation and clinical value of specialty specific intelligence to assist decision making

Competitive Positioning

Data Access

Yale + Partners Established Pipeline

Method

Multimodal Foundation Model Federated Learning Multicenter

Team

Domain Leading Researchers 30 Eye Clinician Collaborators

Patent Experience Writing Provisional Patent

Technical Advantage - Key Progress

First open-source large language model for eye care

- Instruction-tuned Llama model using 4.7k cases reports, 100k abstracts
- Outperformed GPT-4 and 7 other language models

First large multimodal model ophthalmology benchmark

- Benchmark of 5 eye imaging modalities with free-text note
- Existing models show close-to-random performance

Establishing pipeline to collect data for federated learning from Yale and partners

- Yale: 135k patients, University of Florida: 82k, University of Washington: 12k, Stanford: 200k
- Additional testing site at Harvard

Developing first multimodal model for eye care

Roadmap and Budget

Milestone 1 (9 months)		\$72,000
	Yale development and testingComputational resources: \$20,000	
	 Post doc fellow: \$52,000 	
Milestone 2 (1 year)		\$190,000
	Federated learning	
	 Computational resources: \$30,000 	
	Post doc fellow: \$70,000	
	• Regulatory: \$20,000	
Milestone 3 (1.5 years)		Series A
	EMR integration and external clinical validation (RCT) Budget to be raised in Series A	
		Computational resources: \$20,000 Post doc fellow: \$52,000 Milestone 2 (1 year) Federated learning Computational resources: \$30,000 Post doc fellow: \$70,000 Integration dev: \$70,000 Regulatory: \$20,000 Milestone 3 (1.5 years) EMR integration and external clinical validation (RCT)

Total Budget (Milestone 1 + 2): \$262,000

Our Vision: The Operating System for Eye Care

Journey

2

3

4

visionairy Copilot Build the most advanced AI for eye care and implement first product (copilot)	Clinical Al Diagnostic assistance and documentation		Patient Eng ducation and cor	agement npliance tracking	
Comprehensive Platform Expand into full operating system for eye care practices	 Revenue Cycle Billing optimization and management 		Call Center Al-powered patient support		
visionairy in a box Complete solution for modern eye care practices	Smart EHR Intelligent medical records		Patient Portal Seamless patient interface		
Impact ransforming private practices with modern AI-drive	en workflows and improved	^	^	↓ Admin	

Transforming private practices with mo patient outcomes Efficiency Revenue

Comprehensive AI-Powered Platform

Burden

visionairy

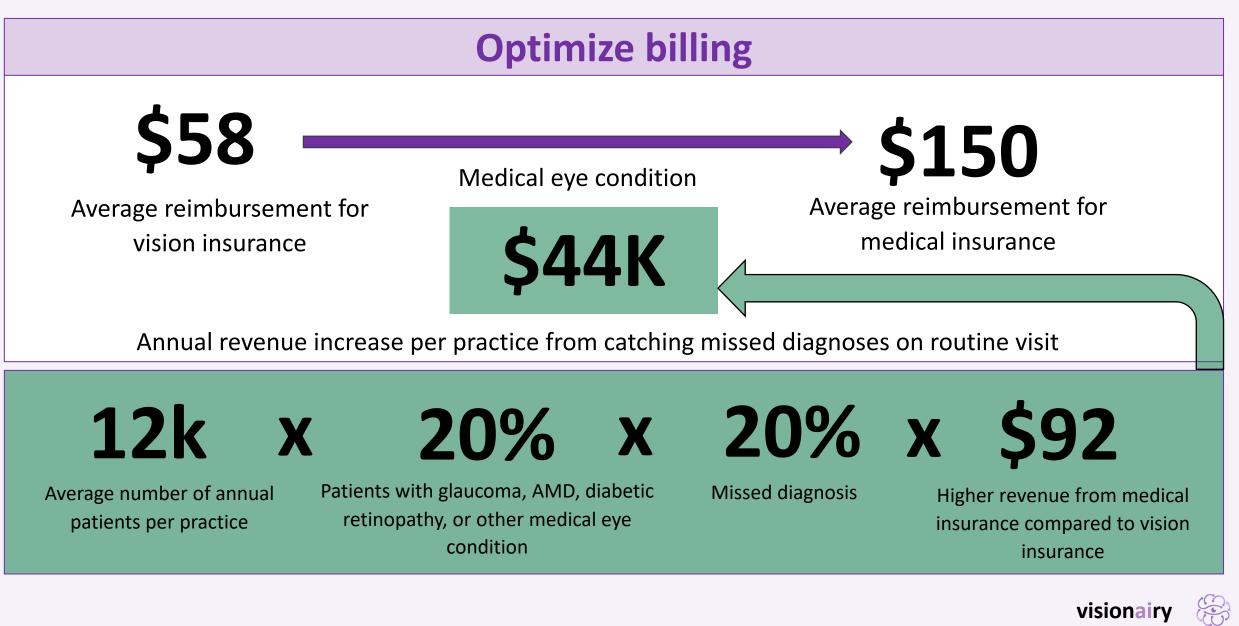
 \odot

Maxwell (Mac) Singer

maxwell.singer@yale.edu

Qingyu Chen

qingyu.chen@yale.edu


Al Copilot for Eye Doctors

References

- Wong WL, Su X, Li X, Cheung CM, Klein R, Cheng CY, Wong TY. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob Health. 2014 Feb;2(2):e106-16. doi: 10.1016/S2214-109X(13)70145-1. Epub 2014 Jan 3. PMID: 25104651.
- Teo ZL, Tham YC, Yu M, Chee ML, Rim TH, Cheung N, Bikbov MM, Wang YX, Tang Y, Lu Y, Wong IY, Ting DSW, Tan GSW, Jonas JB, Sabanayagam C, Wong TY, Cheng CY. Global Prevalence of Diabetic Retinopathy and Projection of Burden through 2045: Systematic Review and Meta-analysis. Ophthalmology. 2021 Nov;128(11):1580-1591. doi: 10.1016/j.ophtha.2021.04.027. Epub 2021 May 1. PMID: 33940045.
- 3. Tham YC, Li X, Wong TY, Quigley HA, Aung T, Cheng CY. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology. 2014 Nov;121(11):2081-90. doi: 10.1016/j.ophtha.2014.05.013. Epub 2014 Jun 26. PMID: 24974815.
- 4. Neely DC, Bray KJ, Huisingh CE, Clark ME, McGwin G, Owsley C. Prevalence of Undiagnosed Age-Related Macular Degeneration in Primary Eye Care. *JAMA Ophthalmol.* 2017;135(6):570–575. doi:10.1001/jamaophthalmol.2017.0830
- 5. Pugh JA, Jacobson JM, Van Heuven WA, Watters JA, Tuley MR, Lairson DR, Lorimor RJ, Kapadia AS, Velez R. Screening for diabetic retinopathy. The wide-angle retinal camera. Diabetes Care. 1993 Jun;16(6):889-95. doi: 10.2337/diacare.16.6.889. PMID: 8100761.
- 6. Grødum K, Heijl A, Bengtsson B. A comparison of glaucoma patients identified through mass screening and in routine clinical practice. Acta Ophthalmol Scand. 2002 Dec;80(6):627-31. doi: 10.1034/j.1600-0420.2002.800613.x. PMID: 12485284.
- 7. Data from National Center for Health Workforce Analysis of the US Department of Health and Human Services
- 8. https://arxiv.org/pdf/2409.15087

Appendix

Sell to Eye Care Practices

visionairy Value Per Patient

Revenue per patient: Optometry: \$141, Ophthalmology: \$180

+10% efficiency gains +5% billing gains = \$21 optometry, \$27 ophthalmology

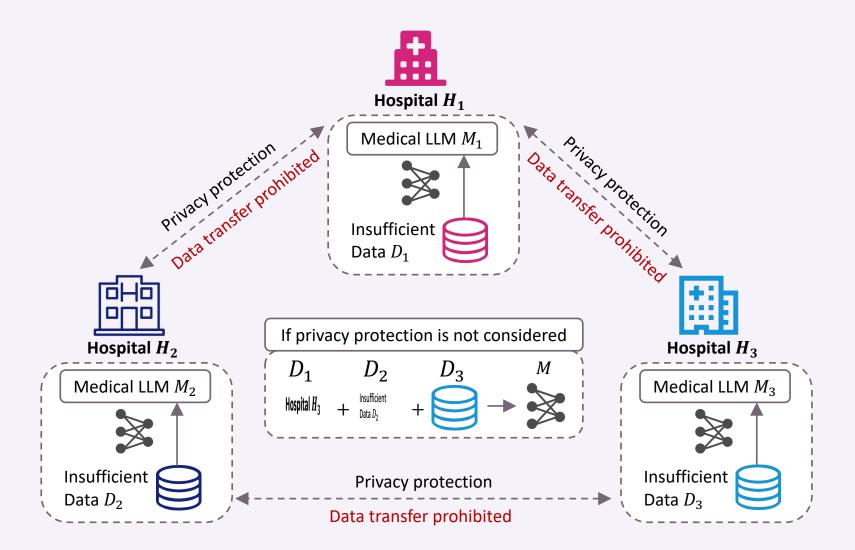
SOM calculations:

17% ophthalmologists in academic medical centers: Market size = 17% x 560M = 95 million

16% optometrists and 15% ophthalmologists practicing under private equity in 2022: Market size = 17% x 480M + 15% X 560M = 161 million

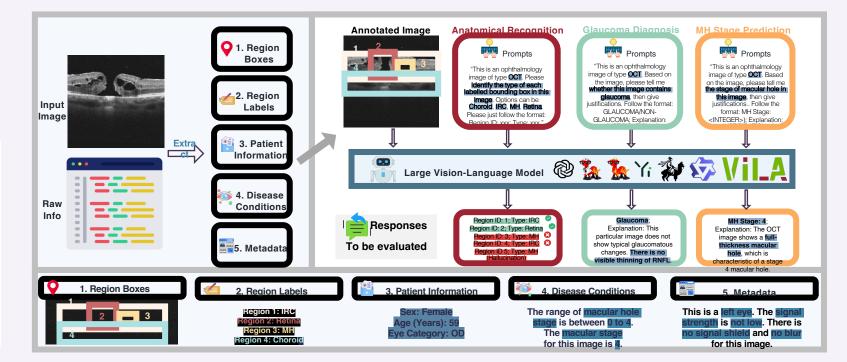
Largest optical retail players = 4500 vision source + 2173 Luxottica + 1354 national vision holdings + 3422 Walmart + 700 eyecare partners + 555 Costco + 852 MyEyeDr + 745 Visionworks + 200 Warby Parker + 284 Keplr = 14785 optometrists * 3000 patients * \$4 = 177 million

https://www.aao.org/Assets/18ebb4d3-84f5-4e6f-9b09-f298b0ed8074/637709388692770000/ophthalmology-facts-figures-2021-pdf?inline=1#:~:text=%E2%80%A2%20Ophthalmologists%20represent%203%25%20of,and%20tech%20companies%20(%3C5%25 https://reviewob.com/how-fast-is-private-equity-in-optometry-growing/ https://www.visionmonday.com/vm-reports/top-50-retailers/article/snapshots-of-opticals-10-largest-us-retail-players-2023/


Eye care models developed by team

- 2018 DeepSeeNet: First open-sourced AMD severity classification/diagnosis, Ophthalmology, NLM Honor Award
- 2019 DeepAMDPrognosis: AMD prognosis prediction tool, Nature Digital Medicine
- 2020 Multi-Modal RPD-Net for reticular pseudodrusen detection, JAMIA, NIH FARE Award
- 2021 DeepLensNet for Cataract quantitative classification, Ophthalmology
- 2022 Deep-GA-Net for geographic atrophy diagnosis, Ophthalmology Science
- 2022 Retinal scan for predicting myocardial infarction, Nature Machine Intelligence
- 2023 DeepOpacityNet for explainable Cataract diagnosis, Ophthalmology
- 2023 Downstream accountability validation on Cataract diagnosis Nature aging
- 2024 LEME: First open-sourced Language Language Model for Eye Care
- 2024 LMOD: First Large Multimodal Model Ophthalmology Benchmark
- 2024 Clinic workflow implementation on AI-assisted eye disease diagnosis & validation with 24 clinicians from 12 institutions. NLM Honor Award. NIH FARE Award

Foundation models developed by team

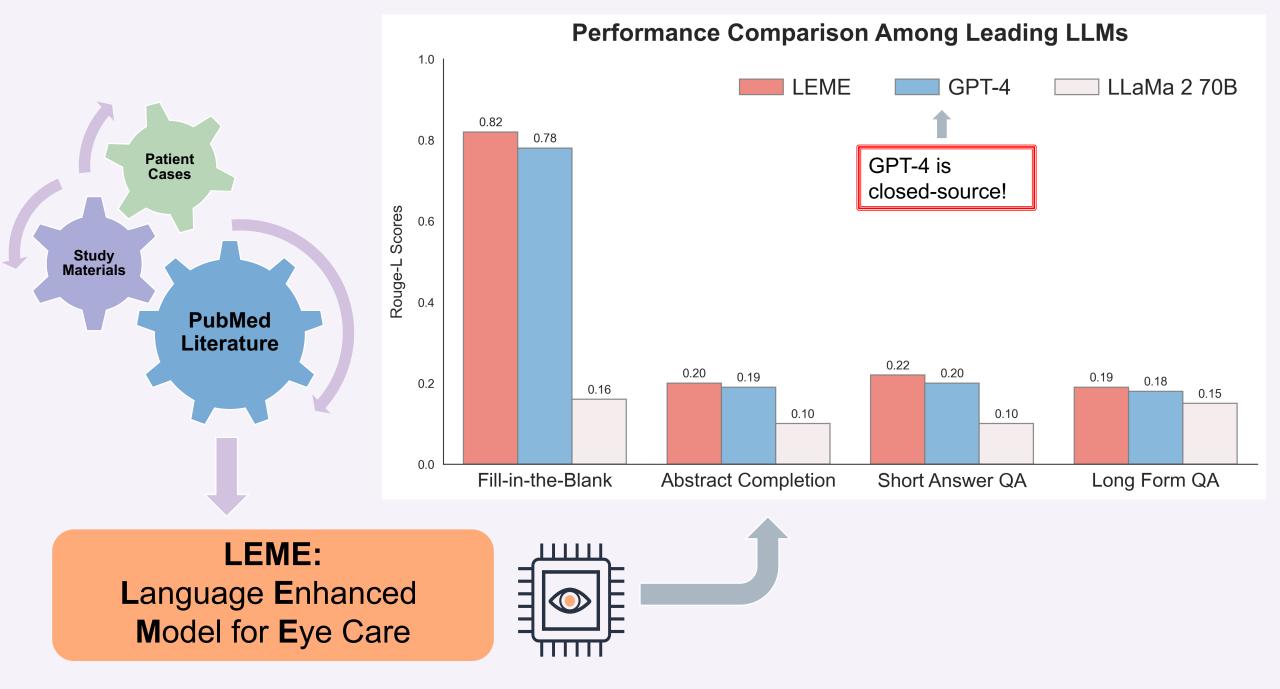

- Developed first sets of deep learning-based language models for medicine
 - BioWordVec, Scientific Data 2019
 - BioSentVec, IEEE ICHI 2020
 - BioConceptVec, PLOS Computational Biology 2020
 - Multi-task BLUEBERT, ACL BioNLP 2022
 - Bioformer, First efficient transformer in production for processing 35 million literature daily 2024
- Recent LLM development and deployment
 - Me Llama, First LLM pretrained on clinical notes 2024
 - Establish the first systematic evaluation of LLMs in medicine on 12 benchmarks. Nature Communications 2024
 - Developed retrieval augmented generation to reduce the hallucination of LLMs in medicine up to 90%. Bioinformatics.
 2024
 - Developed an LLM-Nurse collaboration framework from 10 sites and deployment of with RCT with 2.6K participants, Nature Medicine, 2024
- Four top-ranked performance in medical informatics challenge tasks

Federated Medical Large Language Models

Anran Li, Yuanyuan Chen, Mingfei Cheng, Jian Zhang, Yueming Wu, Anh Tuan Luu, Han Yu, Historical Embedding-Guided Efficient Large-Scale Federated Graph Learning, ACM SIGMOD 2024.
 Anran Li, Guangjing Wang, Ming Hu, Jianfei Sun, Lan Zhang, Luu Anh Tuan, Han Yu, Joint Client-and-Sample Selection for Federated Learning via Bi-level Optimization, IEEE TMC 2024.
 Anran Li, Yue Cao, Jiabao Guo, Hongyi Peng, Qing Guo, Han Yu, FedCSS: Joint Client-and-Sample Selection for Hard Sample-Aware Noise-Robust Federated Learning, ACM SIGMOD 2023.
 Anran Li, Hongyi Peng, Jiahui Huang, Lan Zhang, Qing Guo, Han Yu, Yang Liu, FedSDG-FS: Efficient and Secure Feature Selection for Vertical Federated Learning, IEEE INFOCOM 2023.

MULTIMODAL LARGE MODEL BENCHMARK

We systematically benchmark **13** state-of-the-art large vision-language models on more than **21,000** ophthalmic images across **diverse modalities**, such as OCT, SLO, CFP.


MULTIMODAL

MODEL BENCHMARK

LARGE

	Moda	alities		Image Types		Evaluation Perspectives				
Benchmarks	Images	Texts	Surgical Scenes	SLO	ОСТ	Eye Photos	Fundus Images	Anatomical Understanding	Diagnosis Analysis	
	General-Domain Benchmarks									
ммми	\checkmark	\checkmark	X	X	X	\checkmark	\checkmark	X	Х	
MME- RealWorld	\checkmark	\checkmark	х	х	×	×	×	×	×	
UNK-VQA	\checkmark	\checkmark	Х	Х	Х	Х	Х	Х	Х	
MMCBench	\checkmark	\checkmark	Х	Х	Х	Х	Х	Х	Х	
MathVista	\checkmark	\checkmark	Х	Х	Х	Х	Х	Х	Х	
SEED-Bench	\checkmark	\checkmark	Х	Х	Х	Х	Х	Х	Х	
			Op	hthalmology-Sp	ecific Benchma	rks		•		
Bench- Nephrology	Х	\checkmark	×	х	×	×	х	×	Х	
Eval-GPT- Ophth	Х	\checkmark	×	х	×	×	х	×	Х	
Bench-Myopia	Х	√	X	Х	Х	Х	Х	х	Х	
OphNet	\checkmark	\checkmark	\checkmark	Х	Х	Х	Х	Х	Х	
LMOD (ours)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	

We evaluated the models' performance on **anatomical recognition** and **diagnosis analysis**. Existing models show **close-to-random** performance. We are currently working on developing an **ophthalmology-specialized** large visionlanguage model.

